Natural glufosinate resistance of soil microorganisms and GMO safety
详细信息    查看全文
  • 作者:Timea Tothova (1)
    Anna Sobekova (2)
    Katarina Holovska (2)
    Jaroslav Legath (2)
    Peter Pristas (1)
    Peter Javorsky (1)
  • 关键词:Soil bacteria ; Glufosinate resistance ; Transgenic maize Bt 176 ; bar gene ; Horizontal gene transfer
  • 刊名:Central European Journal of Biology
  • 出版年:2010
  • 出版时间:October 2010
  • 年:2010
  • 卷:5
  • 期:5
  • 页码:656-663
  • 全文大小:1952KB
  • 参考文献:1. Bayer E., Gugel K.H., H盲gele K., Hagenmaier H., Jesspow S., K枚nig W.A., et al., Stoffwechselprodukte von Mikroorganismen. Phosphinothricin und Phosphinothricyl-Alanyl-Alanin, Helv. Chim. Acta., 1972, 55, 224鈥?39, (in German) CrossRef
    2. Kondo Y., Shomura T., Ogawa Y., Tsuruoka T., Watanabe K., Totsukawa K., et al., Studies on new anibiotic SF-1293. I. Isolation and physicochemical and biological characterization of SF-1293 substances, Sci. Reports Meiji Seika Kaisha, 1973, 13, 34鈥?1
    3. Omura S., Hinotozawa K., Imamura N., The structure of phosalacine a new herbicidal antibiotic containing phosphinothricin, J. Antibiot., 1984, 37, 939鈥?40
    4. Wohlleben W., Alijah R., Dorendorf J., Hillemann D., Nussbaumer B., Pelzer S., Identiccation and characterization of phosphinothricin-tripeptide biosynthetic genes in Streptomyces viridochromogenes, Gene, 1992, 115, 127鈥?32 CrossRef
    5. Ahmad I., Malloch D., Interaction of soil microflora with the bioherbicide phosphinothricin, Agric. Ecosyst. Environ., 1995, 54, 165鈥?74 CrossRef
    6. Kriete G., Broer I., Influence of the herbicide phosphinothricin on growth and nodulation capacity of Rhizobium meliloti, Appl. Microbiol. Biotechnol., 1996, 46, 580鈥?86 CrossRef
    7. Tebbe C.C., Reber H.H., Utilization of the herbicide phosphinotricin as a nitrogen source by soil bacteria, Appl. Microbiol. Biotechnol., 1988, 29, 103鈥?05 CrossRef
    8. Bartsch K., Tebbe C., Initial steps in the degradation of phosphinothricin (glufosinate) by soil bacteria, Appl. Environ. Microbiol., 1989, 55, 711鈥?16
    9. Gallina M.A., Stephenson G.R., Dissipation of [14C] Basta ammonium in two Ontario soils, J. Agric. Food Chem., 1992, 40, 165鈥?68 CrossRef
    10. Keese P., Risks from GMOs due to horizontal gene transfer, Environ. Biosafety Res., 2008, 7, 123鈥?49 CrossRef
    11. Widmer F., Seidler R.J., Donegan K.K., Reed G.L., Quantification of transgenic plant marker gene persistence in the field, Mol. Ecol., 224鈥?39
    12. Paget E., Lebrun M., Freyssinet G., Simonet P., The fate of recombinant plant DNA in soil, Eur. J. Soil Biol., 1998, 34, 81鈥?8 CrossRef
    13. Gebhard F., Smalla K., Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer, FEMS Microbiol. Ecol., 1999, 28, 261鈥?71 CrossRef
    14. Mohr K.I., Tebbe C.C., Field study results on the probability and risk of a horizont谩l gene transfer from transgenic herbicide-resistant oilseed rape pollen to gut bacteria of bees, Appl. Microbiol. Biotechnol., 2007, 75, 573鈥?82 CrossRef
    15. Schremph H., Plasmid loss and changes within the chromosomal DNA of Streptomyces reticuli, J. Bacteriol., 1982, 151, 701鈥?07
    16. Tothova T., Godany A., Javorsky P., Pristas P., Production of SacI and SacII isoschizomers by soil streptomycetes, Biologia, 2007, 62, 381鈥?85 CrossRef
    17. Bender R.A., Janssen K.A., Resnick A.D., Blumenberg M., Foor F., Magasanik B., Biochemical Parameters of Glutamine Synthetase from Klebsiela aerogenes, J. Bacteriol., 1977, 129, 1001鈥?009
    18. Bradford M.M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72, 248鈥?54 CrossRef
    19. Cenis J.L., Rapid extraction of fungal DNA for PCR amplification, Nucl. Acids Res., 1992, 20, 2380 CrossRef
    20. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J., 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 1991, 173, 697鈥?03
    21. Kota R., Holton T.A., Henry J.R., Detection of transgenes in crop plants using molecular beacon assays, Plant Mol. Biol. Report., 1999, 17, 363鈥?70 CrossRef
    22. Versalovic J., Koeuth T., Lupski J.R., Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes, Nucl. Acids Res., 1991, 19, 6823鈥?831 CrossRef
    23. Sambrook J., Fritsh E.F., Maniatis T., Molecular cloning: a laboratory manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989
    24. Colanduoni J.A., Villafranca J.J., Inhibition of E. coli glutamine synthetase by phosphinothricin, Bioorg. Chem., 1986, 14, 163鈥?69 CrossRef
    25. Lopez-Silas F.J., Cardenas J., Franco A.R., Biochemical and genetic analysis of a Chlamydonomas reihardtii mutant devoid of chloroplastic glutamine synthetase activity, Planta, 1999, 207, 436鈥?41 CrossRef
    26. Morel M., Buee M., Chalot M., Brun A., NADP-dependent glutamate dehydrogenase: a dispensable function in ectomycorrhizal fungi, New Phytol., 2006, 169, 179鈥?89 CrossRef
    27. Wehrmann A., VanVliet A., Opsomer C., Botterma J., Shultz A., The similarities of bar and pat- gene products make them equally applicable for plant engineers, Nat. Biotechnol., 1996, 14, 1274鈥?278 CrossRef
    28. Smith A.E., Belyk M., Field persistance studies with the herbicide glufosinate-ammonium in Saskatchewan soils, J. Environ. Qual., 1989, 18, 475鈥?79 CrossRef
    29. Quinn J.P., Heron J.K., McMullan G., Glufosinate tolerance and utilization by soil and aquatic bacteria, Biol. Environ. Proc. Royal Irish Acad., 1993, 93B, 181鈥?86
    30. Hsiao Ch-L., Young Ch-Ch., Wang Ch-Y., Screening and Identification of Glufosinate-Degrading Bacteria from Glufosinate-Treated Soils, Weed Sci., 2007, 55, 631鈥?37 CrossRef
    31. Donn G., Tischer E., Smith J.A., Goodman H.M., Herbicide resistant alfalfa cell: An example of gene amplification, J. Mol. Appl. Genet., 1984, 2, 261鈥?65
    32. D鈥機osta V.M., McGrann K.M., Hughes D.W., Wright G.D., Sampling the antibiotic resistome, Science, 2006, 311, 374鈥?77 CrossRef
    33. Deman茅che S., Sanguin H., Pote J., Navarro E., Bernillon D., Mavingui P., Wildi W., Vogel T.M., Simonet, P., Antibiotic-resistant soil bacteria in transgenic plant fields, Proc. Natl. Acad. Sci. USA, 2008, 105, 3957鈥?962 CrossRef
    34. Nielsen K.M., Van Elsas J.D., Stimulatory effects of compounds present in the rhizosphere on natural transformation of Acinetobacter sp. BD143 in soil, Soil Biol. Biochem., 2001, 33, 345鈥?57 CrossRef
    35. Widmer F., Seidler R.J., Watrud L.S., Sensetive detection of transgenic plant marker gene persistence in soil microcosms, Mol. Ecol., 1996, 5, 603鈥?13 CrossRef
    36. Lorenz M.G., Wackernagel W., Bacterial gene transfer by natural genetic transformation in the environment, Microbiol. Rev., 1994, 58, 563鈥?02
    37. Dubnau D., DNA uptake in bacteria, Annu. Rev. Microbiol., 1999, 53, 217鈥?44 CrossRef
    38. Kim Y.T., Kim S.U., Park K.D., Kank, T.H., Lee Y.M., Lee S.H., et al., Investigation of possible horizontal gene transfer from the leaf tissue of transgenic potato to soil bacteria, J. Microbiol. Biotechnol., 2005, 15, 1130鈥?134
  • 作者单位:Timea Tothova (1)
    Anna Sobekova (2)
    Katarina Holovska (2)
    Jaroslav Legath (2)
    Peter Pristas (1)
    Peter Javorsky (1)

    1. Institute of Animal Physiology, Slovak Academy of Sciences, 040 01, Kosice, Slovakia
    2. University of Veterinary Medicine, 041 81, Kosice, Slovakia
  • ISSN:1644-3632
文摘
Bacteria and fungi from pristine soil, never exposed to glufosinate herbicide, were isolated and analyzed for glufosinate tolerance. Seven of the 15 tested isolates were sensitive to 1 mM glufosinate (an active ingredient of many nonselective contact herbicides), 5 were resistant to 4 mM glufosinate and 3 even to 8 mM glufosinate in liquid medium. None of the isolated microorganisms carried the gene for glufosinate resistance bar (bialaphos resistance) in its genome and at least in some of glufosinate-resistant isolates the increased glutamine synthetase level was detected as a possible resistance mechanism. The transfer of the bar glufosinate resistance gene from transgenic maize Bt 176 into glufosinate-sensitive soil bacterium Bacillus pumilus S1 was not detected under the laboratory conditions by a classical plate count method and PCR. The ecological risk of potential bar gene transfer from genetically modified plants into soil microcosms under natural circumstances is discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700