Comparison of three selectable marker genes for transformation of tall fescue (Festuca arundinacea Schreb.) plants by particle bombardment
详细信息    查看全文
  • 作者:Danfeng Long (1)
    Xueli Wu (2)
    Zhimin Yang (2)
    Ingo Lenk (3)
    Klaus Kristian Nielsen (3)
    Caixia Gao (4)
  • 关键词:Tall fescue (Festuca arundinacea Schreb.) ; Particle bombardment ; Selectable markers ; Herbicide ; Antibiotic
  • 刊名:In Vitro Cellular & Developmental Biology - Plant
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:47
  • 期:6
  • 页码:658-666
  • 全文大小:541KB
  • 参考文献:1. Altpeter F.; Baisakh N.; Beachy R. et al. Particle bombardment and the genetic enhancement of crops: myths and realities. / Mol Breeding 15: 305鈥?27; 2005. doi:10.1007/s11032-004-8001-y .
    2. Altpeter F.; Xu J. Rapid production of transgenic turfgrass ( / Festuca rubra L.) plants. / J Plant Physiol 157: 441鈥?48; 2000.
    3. Altpeter F.; Xu J.; Ahmed S. Generation of large numbers of independently transformed fertile perennial ryegrass ( / Lolium perenne L.) plants of forage- and turf-type cultivars. / Mol Breeding 6: 519鈥?28; 2000. doi:10.1023/A:1026589804034 . CrossRef
    4. Cho M. J.; Ha C. D.; Lemaux P. G. Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. / Plant Cell Rep 19: 1084鈥?089; 2000. doi:10.1007/s002990000238 . CrossRef
    5. Cho M. J.; Jiang W.; Lemaux P. G. Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. / Plant Sci 138: 229鈥?44; 1998. doi:10.1016/S0168-9452(98)00162-9 .
    6. Christensen A. H.; Quail P. H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledoneous plants. / Trans Res 5: 213鈥?18; 1996. doi:10.1007/BF01969712 . CrossRef
    7. Dalton S. J.; Bettany A. J. E.; Timms E.; Morris P. The effect of selection pressure on transformation frequency and copy number in transgenic plants of tall fescue ( / Festuca arundinacea Schreb.). / Plant Sci 108: 63鈥?0; 1995. doi:10.1016/0168-9452(95)04127-G . CrossRef
    8. Dennehey B. K.; Petersen W. L.; Ford-Santino C.; Pajeau M.; Armstrong C. L. Comparison of selective agents for use with the selectable marker gene bar in maize transformation. / Pant Cell, Tissue and Organ Culture 36: 1鈥?; 1994. doi:10.1007/BF00048308 . CrossRef
    9. Dong S. J.; Qu R. D. High efficiency transformation of tall fescue with / Agrobacterium tumefaciens. / Plant Sci 168: 1453鈥?458; 2005. doi:10.1016/j.plantsci.2005.01.008 . CrossRef
    10. Gao C. X.; Jiang L.; Folling M.; Han L. B.; Nielsen K. K. Generation of large numbers of transgenic Kentucky bluegrass ( / Poa pratensis L.) plants following biolistic gene transfer. / Plant Cell Rep 25: 19鈥?5; 2006. doi:10.1007/s00299-005-0005-5 . CrossRef
    11. Gao C. X.; Long D. F.; Lenk I.; Nielsen K. K. Comparative analysis of transgenic tall fescue ( / Festuca arundinacea Schreb.) plants obtained by / Agrobacterium-mediated transformation and particle bombardment. / Plant Cell Rep 27: 1601鈥?609; 2008. doi:10.1007/s00299-008-0578-x . CrossRef
    12. Gondo T.; Tsuruta S.; Akashi R.; Kawamura O.; Hoffmann F. Green, herbicide-resistant plants by particle inflow gun-mediated gene transfer to diploid bahiagrass ( / Paspalum notatum). / J Plant Physiol 162: 1367鈥?375; 2005. doi:10.1016/j.jplph.2005.03.005 . CrossRef
    13. Ha S. B.; Wu F. S.; Thorne T. K. Transgenic turf-type tall fescue ( / Festuca arundinacea Schreb.) plants regenerated from protoplasts. / Plant Cell Rep 11: 601鈥?04; 1992. doi:10.1007/BF00236381 . CrossRef
    14. Hauptmann R. M.; Vasil V.; Ozias-Akins P.; Tabaeizadeh Z.; Rogers S. G.; Fraley R. T.; Horsch R. B.; Vasil I. K. Evaluation of selectable markers for obtaining stable transformants in the Gramineae. / Plant Physiol 86: 602鈥?06; 1988. doi:10.1104/pp.86.2.602 . CrossRef
    15. Hoshino Y.; Mii M. Bialaphos stimulates shoot regeneration from hairy roots of snapdragon ( / Antirrhinum majus L.) transformed by / Agrobacterium rhizogenes. / Plant Cell Rep 17: 256鈥?61; 1998. doi:10.1007/s002990050388 . CrossRef
    16. Kamo K.; Eck J. V. Effect of bialaphos and phosphinothricin on plant regeneration from long- and short-term callus cultures of Gladiolus. / In Vitro Cell Dev Biol-Plant 33: 180鈥?83; 1997. doi:10.1007/s11627-997-0018-6 . CrossRef
    17. Luo H.; Hu Q.; Nelson K.; Longo C.; Kausch A. P.; Chandlee J. M.; Wipff J. K.; Fricker C. R. / Agrobacterium tumefaciens-mediated creeping bentgrass ( / Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration. / Plant Cell Rep 22: 645鈥?52; 2004. doi:10.1007/s00299-003-0734-2 . CrossRef
    18. Miki B.; McHugh S. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. / J Biotech 107: 193鈥?32; 2004. doi:10.1016/j.ydbio.2003.10.011 . CrossRef
    19. Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. / Physiol Plant 15: 473鈥?97; 1962. doi:10.1111/j.1399-3054.1962.tb08052.x . CrossRef
    20. Rasco-Gaunt S.; Riley A.; Cannell M.; Barcelo P.; Lazzeri P. A. Procedures allowing the transformation of a range of European elite wheat ( / Triticum aestivum L.) varieties via particle bombardment. / J Exp Bot 52: 865鈥?74; 2001. doi:10.1093/jexbot/52.357.865 .
    21. Sambrook J.; Fritsch E. F.; Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 9.31鈥?.62; 1989.
    22. Smith R. L.; Grando M. F.; Li Y. Y.; Seib J. C.; Shatters R. G. Transformation of bahiagrass ( / Paspalum notatum Flugge). / Plant Cell Rep 20: 1017鈥?021; 2002. doi:10.1007/s00299-001-0423-y . CrossRef
    23. Somleva M. N.; Tomaszewski Z.; Conger B. V. / Agrobacterium-mediated genetic transformation of switchgrass. / Crop Sci 42: 2080鈥?087; 2002. doi:10.2135/cropsci2002.2080 . CrossRef
    24. Spangenberg G.; Wang Z. Y.; Wu X. L.; Nagel J.; Iglesias V. A.; Potrykus I. Transgenic tall fescue ( / Festuca arundinacea) and red fescue ( / F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. / J Plant Physiol 145: 693鈥?01; 1995.
    25. Suzuki S.; Nakano M.; Koike Y.; Ueda K.; Inoue M.; Nishihara M.; Yamamura S. Comparison of selection efficiency between the bar and hpt genes in / Agrobacterium-mediated transformation of / Muscari armeniacum. / J Japan Soc Hort Sci 74(1): 60鈥?2; 2005. doi:10.2503/jjshs.74.60 . CrossRef
    26. Vain P.; McMullen M. D.; Finer J. J. Osmotic treatment particle bombardment-mediated transient and stable transformation of maize. / Plant Cell Rep 12: 84鈥?8; 1993. doi:10.1007/BF00241940 . CrossRef
    27. Wang Z. Y.; Ge Y. X. / Agrobacterium-mediated high efficiency transformation of tall fescue ( / Festuca arundinacea). / J Plant Physiol 162: 103鈥?13; 2005. doi:10.1016/j.jplph.2004.07.009 . CrossRef
    28. Wang Z. Y.; Ge Y. X. Recent advances in genetic transformation of forage and turf grasses. / In Vitro Cell Dev Biol-Plant 42: 1鈥?8; 2006. doi:10.1079/IVP2005726 .
    29. Wang Z. Y.; Takamizo T.; Iglesias V. A.; Osusky M.; Nagel J.; Portryus I.; Spangenberg G. Transgenic plants of tall fescue ( / Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplast. / Nat Biotechnol 10: 691鈥?96; 1992. doi:10.1038/nbt0692-691 . CrossRef
    30. Witrzens B.; Brettell R. I. S.; Murray F. R.; McElroy D.; Li Z. Y.; Dennis E. S. Comparison of three selectable marker genes for transformation of wheat by microprojectile bombardment. / Aust J Plant Physiol 25(1): 39鈥?4; 1998. doi:10.1071/PP97095 . CrossRef
    31. Zhang G.; Lu S.; Chen T. A.; Funk C. R.; Meyer W. A. Transformation of triploid bermudagrass ( / Cynodon dactylon X C. transvaalensis cv. TifEagle) by means of biolistic bombardment. / Plant Cell Rep 21: 860鈥?64; 2003. doi:10.1007/s00299-003-0585-x .
  • 作者单位:Danfeng Long (1)
    Xueli Wu (2)
    Zhimin Yang (2)
    Ingo Lenk (3)
    Klaus Kristian Nielsen (3)
    Caixia Gao (4)

    1. School of Life Science, Lanzhou University, Lanzhou, China
    2. College of Horticulture, Nanjing Agricultural University, Nanjing, China
    3. Research Division, DLF-Trifolium Ltd., Hoejerupvej 31, Store Heddinge, Denmark
    4. The State Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
文摘
A variety of selection systems have been developed for transformation of forage crops. To compare the most frequently used systems, we tested three selectable marker genes for their selection efficiency under four selection procedures for the production of transgenic tall fescue. Embryogenic calluses initiated from mature embryos were bombarded with three constructs containing either the phosphinothricin acetyltransferase (bar) gene, the hygromycin phosphotransferase (hpt) gene or the neomycin phosphotransferase II (nptII) gene. Transformation efficiency was strongly influenced by the selectable marker gene, selection procedure and genotype. The highest transformation efficiency was observed using the bar gene in combination with bialaphos. Average transformation efficiencies with bialaphos, phosphinothricin (glufosinate), hygromycin and paromomycin selection across the two callus lines used in the experiments were 9.4%, 4.4%, 5.2% and 1.6%, respectively. Southern blot analysis revealed the independent nature of the tested transgenic plants and a complex transgene integration pattern with multiple insertions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700