Application of Gaussia luciferase in bicistronic and non-conventional secretion reporter constructs
详细信息    查看全文
  • 作者:Christin Luft (1)
    Jamie Freeman (1)
    David Elliott (1)
    Nadia Al-Tamimi (1)
    Janos Kriston-Vizi (1)
    Jacob Heintze (1)
    Ida Lindenschmidt (1)
    Brian Seed (2)
    Robin Ketteler (1)

    1. Medical Research Council
    ; Laboratory for Moleclar and Cell Biology ; University College London ; Gower Street ; London ; WC1E 6BT ; UK
    2. Center for Computational and Integrative Biology
    ; Massachusetts General Hospital ; Boston ; MA02114 ; USA
  • 关键词:Non ; conventional secretion ; Gaussia luciferase ; GGA1 ; Bicistronic expression ; Signal peptide
  • 刊名:BMC Biochemistry
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,841 KB
  • 参考文献:1. Thompson, EM, Nagata, S, Tsuji, FI (1989) Cloning and expression of cDNA for the luciferase from the marine ostracod Vargula hilgendorfii. Proc Natl Acad Sci U S A 86: pp. 6567-6571 CrossRef
    2. Verhaegent, M, Christopoulos, TK (2002) Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal Chem 74: pp. 4378-4385 CrossRef
    3. Markova, SV, Golz, S, Frank, LA, Kalthof, B, Vysotski, ES (2004) Cloning and expression of cDNA for a luciferase from the marine copepod Metridia longa. A novel secreted bioluminescent reporter enzyme. J Biol Chem 279: pp. 3212-3217 CrossRef
    4. Takenaka, Y, Masuda, H, Yamaguchi, A, Nishikawa, S, Shigeri, Y, Yoshida, Y, Mizuno, H (2008) Two forms of secreted and thermostable luciferases from the marine copepod crustacean, Metridia pacifica. Gene 425: pp. 28-35 CrossRef
    5. Takenaka, Y, Yamaguchi, A, Tsuruoka, N, Torimura, M, Gojobori, T, Shigeri, Y (2012) Evolution of bioluminescence in marine planktonic copepods. Mol Biol Evol 29: pp. 1669-1681 CrossRef
    6. Takenaka Y, Noda-Ogura A, Imanishi T, Yamaguchi A, Gojobori T, Shigeri Y: Computational analysis and functional expression of ancestral copepod luciferase. / Gene 2013.,528(2): Epub 2013 Jul 2023
    7. Hall, MP, Unch, J, Binkowski, BF, Valley, MP, Butler, BL, Wood, MG, Otto, P, Zimmerman, K, Vidugiris, G, Machleidt, T, Robers, MB, Benink, HA, Eggers, CT, Slater, MR, Meisenheimer, PL, Klaubert, DH, Fan, F, Encell, LP, Wood, KV (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7: pp. 1848-1857 CrossRef
    8. Maguire, CA, Deliolanis, NC, Pike, L, Niers, JM, Tjon-Kon-Fat, L-A, Sena-Esteves, M, Tannous, BA (2009) Gaussia luciferase variant for high-throughput functional screening applications. Anal Chem 81: pp. 7102-7106 CrossRef
    9. Degeling, MH, Bovenberg, MSS, Lewandrowski, GK, de Gooijer, MC, Vleggeert-Lankamp, CLA, Tannous, M, Maguire, CA, Tannous, BA (2013) Directed molecular evolution reveals Gaussia luciferase variants with enhanced light output stability. Anal Chem 85: pp. 3006-3012 CrossRef
    10. Welsh, JP, Patel, KG, Manthiram, K, Swartz, JR (2009) Multiply mutated Gaussia luciferases provide prolonged and intense bioluminescence. Biochem Biophys Res Commun 389: pp. 563-568 CrossRef
    11. Tannous, BA (2009) Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nat Protoc 4: pp. 582-591 CrossRef
    12. Kim, SB, Sato, M, Tao, H (2009) Split Gaussia luciferase-based bioluminescence template for tracing protein dynamics in living cells. Anal Chem 81: pp. 67-74 CrossRef
    13. Remy, I, Michnick, SW (2006) A highly sensitive protein-protein interaction assay based on Gaussia luciferase. Nat Methods 3: pp. 977-979 CrossRef
    14. Luker, KE, Mihalko, LA, Schmidt, BT, Lewin, SA, Ray, P, Shcherbo, D, Chudakov, DM, Luker, GD (2011) In vivo imaging of ligand receptor binding with Gaussia luciferase complementation. Nat Med 18: pp. 172-177 CrossRef
    15. Neveu, G, Cassonnet, P, Vidalain, P-O, Rolloy, C, Mendoza, J, Jones, L, Tangy, F, Muller, M, Demeret, C, Tafforeau, L, Lotteau, V, Rabourdin-Combe, C, Trav茅, G, Dricot, A, Hill, DE, Vidal, M, Favre, M, Jacob, Y (2012) Comparative analysis of virus-host interactomes with a mammalian high-throughput protein complementation assay based on Gaussia princeps luciferase. Methods 58: pp. 349-359 CrossRef
    16. Hashimoto, T, Adams, KW, Fan, Z, McLean, PJ, Hyman, BT (2011) Characterization of oligomer formation of amyloid-beta peptide using a split-luciferase complementation assay. J Biol Chem 286: pp. 27081-27091 CrossRef
    17. Wurdinger, T, Badr, C, Pike, L, de Kleine, R, Weissleder, R, Breakefield, XO, Tannous, BA (2008) A secreted luciferase for ex vivo monitoring of in vivo processes. Nat Methods 5: pp. 171-173 CrossRef
    18. Bartok, E, Bauernfeind, F, Khaminets, MG, Jakobs, C, Monks, B, Fitzgerald, KA, Latz, E, Hornung, V (2013) iGLuc: a luciferase-based inflammasome and protease activity reporter. Nat Methods 10: pp. 147-154 CrossRef
    19. Ketteler, R, Sun, Z, Kovacs, KF, He, W-W, Seed, B (2008) A pathway sensor for genome-wide screens of intracellular proteolytic cleavage. Genome Biol 9: pp. R64 CrossRef
    20. Ketteler, R, Seed, B (2008) Quantitation of autophagy by luciferase release assay. Autophagy 4: pp. 801-806 CrossRef
    21. Niers, JM, Kerami, M, Pike, L, Lewandrowski, G, Tannous, BA (2011) Multimodal in vivo imaging and blood monitoring of intrinsic and extrinsic apoptosis. Mol Ther 19: pp. 1090-1096 CrossRef
    22. Koutsoudakis, G, Perez-del-Pulgar, S, Gonzalez, P, Crespo, G, Navasa, M, Forns, X (2012) A Gaussia luciferase cell-based system to assess the infection of cell culture- and serum-derived hepatitis C virus. PLoS One 7: pp. e53254 CrossRef
    23. Kuang, E, Okumura, CYM, Sheffy-Levin, S, Varsano, T, Shu, VC-W, Qi, J, Niesman, IR, Yang, H-J, Lopez-Otin, C, Yang, WY, Reed, JC, Broday, L, Nizet, V, Ronai, ZA (2012) Regulation of ATG4B stability by RNF5 limits basal levels of autophagy and influences susceptibility to bacterial infection. PLoS Genet 8: pp. e1003007 CrossRef
    24. Garcia-Garcia, A, Rodriguez-Rocha, H, Tseng, MT, de Montes Oca-Luna, R, Zhou, HS, McMasters, KM, Gomez-Gutierrez, JG (2012) E2F-1 lacking the transcriptional activity domain induces autophagy. Cancer Biol Ther 13: pp. 1091-1101 CrossRef
    25. Rodriguez-Rocha, H, Gomez-Gutierrez, JG, Garcia-Garcia, A, Rao, X-M, Chen, L, McMasters, KM, Zhou, HS (2011) Adenoviruses induce autophagy to promote virus replication and oncolysis. Virology 416: pp. 9-15 CrossRef
    26. Bhatelia, K, Singh, A, Tomar, D, Singh, K, Sripada, L, Chagtoo, M, Prajapati, P, Singh, R, Godbole, MM, Singh, R (2014) Antiviral signaling protein MITA acts as a tumor suppressor in breast cancer by regulating NF-kappaB induced cell death. Biochim Biophys Acta 1842: pp. 144-153 CrossRef
    27. Coleman, J, Inukai, M, Inouye, M (1985) Dual functions of the signal peptide in protein transfer across the membrane. Cell 43: pp. 351-360 CrossRef
    28. Bruns, C, McCaffery, JM, Curwin, AJ, Duran, JM, Malhotra, V (2011) Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. J Cell Biol 195: pp. 979-992 CrossRef
    29. Dupont, N, Jiang, S, Pilli, M, Ornatowski, W, Bhattacharya, D, Deretic, V (2011) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J 30: pp. 4701-4711 CrossRef
    30. Duran, JM, Anjard, C, Stefan, C, Loomis, WF, Malhotra, V (2010) Unconventional secretion of Acb1 is mediated by autophagosomes. J Cell Biol 188: pp. 527-536 CrossRef
    31. Manjithaya, R, Anjard, C, Loomis, WF, Subramani, S (2010) Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J Cell Biol 188: pp. 537-546 CrossRef
    32. Misumi, Y, Miki, K, Takatsuki, A, Tamura, G, Ikehara, Y (1986) Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J Biol Chem 261: pp. 11398-11403
    33. Glynn, IM (1964) The Action of Cardiac Glycosides on Ion Movements. Pharmacol Rev 16: pp. 381-407
    34. Zhang, L, Yu, J, Pan, H, Hu, P, Hao, Y, Cai, W, Zhu, H, Yu, AD, Xie, X, Ma, D, Yuan, J (2007) Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci U S A 104: pp. 19023-19028 CrossRef
    35. Noda, T, Ohsumi, Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273: pp. 3963-3966 CrossRef
    36. Bursch, W, Ellinger, A, Kienzl, H, Torok, L, Pandey, S, Sikorska, M, Walker, R, Hermann, RS (1996) Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17: pp. 1595-1607 CrossRef
    37. Scarlatti, F, Bauvy, C, Ventruti, A, Sala, G, Cluzeaud, F, Vandewalle, A, Ghidoni, R, Codogno, P (2004) Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 279: pp. 18384-18391 CrossRef
    38. Chen, Y, McMillan-Ward, E, Kong, J, Israels, SJ, Gibson, SB (2007) Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci 120: pp. 4155-4166 CrossRef
    39. Hosokawa, N, Hara, Y, Mizushima, N (2006) Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size. FEBS Lett 580: pp. 2623-2629 CrossRef
    40. Nickel, W (2007) Unconventional secretion: an extracellular trap for export of fibroblast growth factor 2. J Cell Sci 120: pp. 2295-2299 CrossRef
    41. Badr, CE, Hewett, JW, Breakefield, XO, Tannous, BA (2007) A highly sensitive assay for monitoring the secretory pathway and ER stress. PLoS One 2: pp. e571 CrossRef
    42. Szymczak, AL, Workman, CJ, Wang, Y, Vignali, KM, Dilioglou, S, Vanin, EF, Vignali, DAA (2004) Correction of multi-gene deficiency in vivo using a single 鈥榮elf-cleaving鈥?2A peptide-based retroviral vector. Nat Biotechnol 22: pp. 589-594 CrossRef
    43. Knappskog, S, Ravneberg, H, Gjerdrum, C, Trosse, C, Stern, B, Pryme, IF (2007) The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide. J Biotechnol 128: pp. 705-715 CrossRef
    44. Prudovsky, I, Mandinova, A, Soldi, R, Bagala, C, Graziani, I, Landriscina, M, Tarantini, F, Duarte, M, Bellum, S, Doherty, H, Maciag, T (2003) The non-classical export routes: FGF1 and IL-1alpha point the way. J Cell Sci 116: pp. 4871-4881 CrossRef
    45. Nickel, W (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 270: pp. 2109-2119 CrossRef
    46. Nickel, W, Rabouille, C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10: pp. 148-155 CrossRef
    47. Pallet, N, Sirois, I, Bell, C, Hanafi, L-A, Hamelin, K, Dieude, M, Rondeau, C, Thibault, P, Desjardins, M, Hebert, M-J (2013) A comprehensive characterization of membrane vesicles released by autophagic human endothelial cells. Proteomics 13: pp. 1108-1120 CrossRef
    48. Hirst, J, Lui, WW, Bright, NA, Totty, N, Seaman, MN, Robinson, MS (2000) A family of proteins with gamma-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J Cell Biol 149: pp. 67-80 CrossRef
    49. Knuehl, C, Chen, CY, Manalo, V, Hwang, PK, Ota, N, Brodsky, FM (2006) Novel binding sites on clathrin and adaptors regulate distinct aspects of coat assembly. Traffic 7: pp. 1688-1700 CrossRef
    50. Puertollano, R, van der Wel, NN, Greene, LE, Eisenberg, E, Peters, PJ, Bonifacino, JS (2003) Morphology and dynamics of clathrin/GGA1-coated carriers budding from the trans-Golgi network. Mol Biol Cell 14: pp. 1545-1557 CrossRef
    51. Zhang, F, Yim, YI, Scarselletta, S, Norton, M, Eisenberg, E, Greene, LE (2007) Clathrin adaptor GGA1 polymerizes clathrin into tubules. J Biol Chem 282: pp. 13282-13289 CrossRef
    52. Doray, B, Ghosh, P, Griffith, J, Geuze, HJ, Kornfeld, S (2002) Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science 297: pp. 1700-1703 CrossRef
    53. Zhdankina, O, Strand, NL, Redmond, JM, Boman, AL (2001) Yeast GGA proteins interact with GTP-bound Arf and facilitate transport through the Golgi. Yeast 18: pp. 1-18 CrossRef
    54. Shiba, T, Kawasaki, M, Takatsu, H, Nogi, T, Matsugaki, N, Igarashi, N, Suzuki, M, Kato, R, Nakayama, K, Wakatsuki, S (2003) Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport. Nat Struct Biol 10: pp. 386-393 CrossRef
    55. Mattera, R, Arighi, CN, Lodge, R, Zerial, M, Bonifacino, JS (2003) Divalent interaction of the GGAs with the Rabaptin-5-Rabex-5 complex. EMBO J 22: pp. 78-88 CrossRef
    56. Zhu, G, Zhai, P, He, X, Wakeham, N, Rodgers, K, Li, G, Tang, J, Zhang, XC (2004) Crystal structure of human GGA1 GAT domain complexed with the GAT-binding domain of Rabaptin5. EMBO J 23: pp. 3909-3917 CrossRef
    57. Mattera, R, Puertollano, R, Smith, WJ, Bonifacino, JS (2004) The trihelical bundle subdomain of the GGA proteins interacts with multiple partners through overlapping but distinct sites. J Biol Chem 279: pp. 31409-31418 CrossRef
    58. Joshi, A, Nagashima, K, Freed, EO (2009) Defects in cellular sorting and retroviral assembly induced by GGA overexpression. BMC Cell Biol 10: pp. 72 CrossRef
    59. von Arnim, CA, Tangredi, MM, Peltan, ID, Lee, BM, Irizarry, MC, Kinoshita, A, Hyman, BT (2004) Demonstration of BACE (beta-secretase) phosphorylation and its interaction with GGA1 in cells by fluorescence-lifetime imaging microscopy. J Cell Sci 117: pp. 5437-5445 CrossRef
    60. Wahle, T, Prager, K, Raffler, N, Haass, C, Famulok, M, Walter, J (2005) GGA proteins regulate retrograde transport of BACE1 from endosomes to the trans-Golgi network. Mol Cell Neurosci 29: pp. 453-461 CrossRef
    61. Wahle, T, Thal, DR, Sastre, M, Rentmeister, A, Bogdanovic, N, Famulok, M, Heneka, MT, Walter, J (2006) GGA1 is expressed in the human brain and affects the generation of amyloid beta-peptide. J Neurosci 26: pp. 12838-12846 CrossRef
    62. von Arnim, CAF, Spoelgen, R, Peltan, ID, Deng, M, Courchesne, S, Koker, M, Matsui, T, Kowa, H, Lichtenthaler, SF, Irizarry, MC, Hyman, BT (2006) GGA1 acts as a spatial switch altering amyloid precursor protein trafficking and processing. J Neurosci 26: pp. 9913-9922 CrossRef
    63. He, X, Chang, WP, Koelsch, G, Tang, J (2002) Memapsin 2 (beta-secretase) cytosolic domain binds to the VHS domains of GGA1 and GGA2: implications on the endocytosis mechanism of memapsin 2. FEBS Lett 524: pp. 183-187 CrossRef
    64. Shiba, T, Kametaka, S, Kawasaki, M, Shibata, M, Waguri, S, Uchiyama, Y, Wakatsuki, S (2004) Insights into the phosphoregulation of beta-secretase sorting signal by the VHS domain of GGA1. Traffic 5: pp. 437-448 CrossRef
    65. Ketteler, R, Glaser, S, Sandra, O, Martens, UM, Klingmuller, U (2002) Enhanced transgene expression in primitive hematopoietic progenitor cells and embryonic stem cells efficiently transduced by optimized retroviral hybrid vectors. Gene Ther 9: pp. 477-487 CrossRef
  • 刊物主题:Biochemistry, general; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2091
文摘
Background Secreted luciferases are highly useful bioluminescent reporters for cell-based assays and drug discovery. A variety of secreted luciferases from marine organisms have been described that harbor an N-terminal signal peptide for release along the classical secretory pathway. Here, we have characterized the secretion of Gaussia luciferase in more detail. Results We describe three basic mechanisms by which GLUC can be released from cells: first, classical secretion by virtue of the N-terminal signal peptide; second, internal signal peptide-mediated secretion and third, non-conventional secretion in the absence of an N-terminal signal peptide. Non-conventional release of dNGLUC is not stress-induced, does not require autophagy and can be enhanced by growth factor stimulation. Furthermore, we have identified the golgi-associated, gamma adaptin ear containing, ARF binding protein 1 (GGA1) as a suppressor of release of dNGLUC. Conclusions Due to its secretion via multiple secretion pathways GLUC can find multiple applications as a research tool to study classical and non-conventional secretion. As GLUC can also be released from a reporter construct by internal signal peptide-mediated secretion it can be incorporated in a novel bicistronic secretion system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700