Periodic orbits and escapes in dynamical systems
详细信息    查看全文
  • 作者:George Contopoulos (1) gcontop@academyofathens.gr
    Mirella Harsoula (1) mharsoul@academyofathens.gr
    Georgios Lukes-Gerakopoulos (12) gglukes@gmail.com
  • 关键词:Hamiltonian systems &#8211 ; Periodic orbits &#8211 ; Manko ; Novikov metric
  • 刊名:Celestial Mechanics and Dynamical Astronomy
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:113
  • 期:3
  • 页码:255-278
  • 全文大小:1.6 MB
  • 参考文献:1. Apostolatos T.A., Lukes-Gerakopoulos G., Contopoulos G.: How to observe a non-kerr spacetime using gravitational waves. Phys. Rev. Lett. 103, 111101 (2009). doi:
    2. Bambi C.: Constraint on the quadrupole moment of super-massive black hole candidates from the estimate of the mean radiative efficiency of AGN. Phys. Rev. D 83, 103003 (2011). doi:
    3. Bambi C., Barausse E.: Constraining the quadrupole moment of stellar-mass black hole candidates with the continuum fitting method. Astrophys. J. 731, 121 (2011). doi:
    4. Bambi C., Barausse E.: Final stages of accretion onto non-Kerr compact objects. Phys. Rev. D 84, 084034 (2011). doi:
    5. Benet L., Trautman D., Seligman T.: Chaotic scattering in the restricted three-body problem. I. The Copenhagen problem. Celest. Mech. Dyn. Astron. 66, 203–228 (1996). doi:
    6. Benet L., Seligman T., Trautman D.: Chaotic scattering in the restricted three-body problem II. Small mass parameters. Celest. Mech. Dyn. Astron. 71, 167 (1998). doi:
    7. Bleher S. , Grebogi C., Ott E., Brown R.: Fractal boundaries for exit in Hamiltonian dynamics. Phys. Rev. A 38, 930–938 (1988). doi:
    8. Carter B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968). doi:
    9. Churchill R., Pecelli G., Rod D.: Isolated unstable periodic orbits. J. Differ. Equ. 17, 329–348 (1975). doi:
    10. Contopoulos G.: Asymptotic curves and escapes in Hamiltonian systems. Astron. Astrophys. 231, 41–55 (1990)
    11. Contopoulos G.: Order and Chaos in Dynamical Astronomy. Springer, Berlin (2002)
    12. Contopoulos G., Efstathiou K.: Escapes and recurrence in a simple Hamiltonian system. Celest. Mech. Dyn. Astron. 88, 163–183 (2004). doi:
    13. Contopoulos G., Harsoula M.: Stickiness in chaos. Int. J. Bifurcat. Chaos 18, 2929 (2008). doi:
    14. Contopoulos G., Harsoula M.: Stickiness effects in chaos. Celest. Mech. Dyn. 107, 77 (2010). doi:
    15. Contopoulos G., Kaufmann D.: Types of escapes in a simple Hamiltonian system. Astron. Astrophys. 253, 379–388 (1992)
    16. Contopoulos G., Zikides M.: Periodic orbits and ergodic components of a resonant dynamical system. Astron. Astrophys. 90, 198–203 (1980)
    17. Contopoulos G., Kandrup H.E., Kaufmann D.: Fractal properties of escape from a two-dimensional potential. Phys. D 64, 310 (1993). doi:
    18. Contopoulos G., Papadaki H., Polymilis C.: The structure of chaos in a potential without escapes. Celest. Mech. Dyn. Astron. 60, 249 (1994). doi:
    19. Contopoulos G., Lukes-Gerakopoulos G., Apostolatos T.A.: Orbits in a non-Kerr dynamical system. Int. J. Bifurc. Chaos 21, 2261 (2011). doi:
    20. Cristadoro G., Ketzmerick R.: Universality of algebraic decays in Hamiltonian systems. Phys. Rev. Lett. 100, 184101 (2008). doi:
    21. Eckhardt B.: Irregular scattering. Phys. D 33, 89–98 (1988). doi:
    22. Eckmann J.-P.: Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys. 53, 643–654 (1981). doi:
    23. Gair J.R., Li C., Mandel I.: Observable properties of orbits in exact bumpy spacetimes. Phys. Rev. D 77, 024035 (2008). doi:
    24. Heggie D.C.: On the bifurcations of a certain family of periodic orbits. Celest. Mech. 29, 207–214 (1983). doi:
    25. H茅non M.: La diffusion chaotique. Rech. 209, 490–498 (1989)
    26. Jung C., Scholz H.: Cantor set structures in the singularities of classical potential scattering. J. Phys. A 21, 3607–3617 (1988). doi:
    27. Kerr R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963). doi:
    28. Lukes-Gerakopoulos G., Apostolatos T.A., Contopoulos G.: Observable signature of a background deviating from the Kerr metric. Phys. Rev. D 81, 124005 (2010). doi:
    29. Manko V.S., Novikov I.D.: Generalizations of the Kerr and Kerr-Newman metrics possessing an arbitrary set of mass-multipole moments. Class. Quantum Gravity 9, 2477–2487 (1992). doi:
    30. Newhouse S.E.: Quasi-elliptic periodic points in conservative dynamical systems. Am. J. Math. 99, 1061–1087 (1977)
    31. Newhouse S.E.: The creation of non-trivial recurrence in the dynamics of diffeomorphisms. In: Iooss, G., Helleman, R.H.G., Stora, R. (eds) Chaotic Behaviour of Deterministic Systems, pp. 381–442. North-Holland, Amsterdam (1983)
    32. Ott E., T茅l T.: Chaotic scattering: an introduction. Chaos 3, 417–426 (1993). doi:
    33. Petit J.-M., H茅non M.: Satellite encounters. Icarus 66, 536–555 (1986). doi:
    34. Psaltis, D., Johannsen, T.: A ray-tracing algorithm for spinning compact object spacetimes with arbitrary quadrupole moments. I. Quasi-Kerr black holes. http://arxiv.org/abs/1011.4078 (2010)
    35. Siopis C.V., Contopoulos G., Kandrup H.E.: Escape probabilities in a Hamiltonian with two channels of escape. N. Y. Acad. Sci. Ann. 751, 205 (1995). doi:
    36. Siopis C.V., Kandrup H.E., Contopoulos G., Dvorak R.: Universal properties of escape. N. Y. Acad. Sci. Ann. 773, 221 (1995). doi:
    37. Siopis C.V., Kandrup H.E., Contopoulos G., Dvorak R.: Universal properties of escape in dynamical systems. Celest. Mech. Dyn. Astron. 65, 57–681 (1996). doi:
    38. Szebehely V.: Theory of Orbits. Academic Press, New York (1967)
    39. Venegeroles R.: Universality of algebraic laws in Hamiltonian systems. Phys. Rev. Lett. 102, 64101 (2009). doi:
  • 作者单位:1. Research Center for Astronomy and Applied Mathematics, Academy of Athens, Soranou Efesiou 4, 11527 Athens, Greece2. Theoretical Physics Institute, University of Jena, 07743 Jena, Germany
  • ISSN:1572-9478
文摘
We study the periodic orbits and the escapes in two different dynamical systems, namely (1) a classical system of two coupled oscillators, and (2) the Manko-Novikov metric which is a perturbation of the Kerr metric (a general relativistic system). We find their simple periodic orbits, their characteristics and their stability. Then we find their ordered and chaotic domains. As the energy goes beyond the escape energy, most chaotic orbits escape. In the first case we consider escapes to infinity, while in the second case we emphasize escapes to the central “bumpy” black hole. When the energy reaches its escape value, a particular family of periodic orbits reaches an infinite period and then the family disappears (the orbit escapes). As this family approaches termination it undergoes an infinity of equal period and double period bifurcations at transitions from stability to instability and vice versa. The bifurcating families continue to exist beyond the escape energy. We study the forms of the phase space for various energies, and the statistics of the chaotic and escaping orbits. The proportion of these orbits increases abruptly as the energy goes beyond the escape energy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700