Bifurcation of orbits and synchrony in inferior olive neurons
详细信息    查看全文
  • 作者:Keum W. Lee (1) kwlee@kwandong.ac.kr
    Sahjendra N. Singh (2) sahaj@egr.unlv.edu
  • 关键词:Inferior olive neurons &#8211 ; Bifurcation of orbits &#8211 ; Synchronization &#8211 ; Linear and nonlinear control
  • 刊名:Journal of Mathematical Biology
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:65
  • 期:3
  • 页码:465-491
  • 全文大小:3.0 MB
  • 参考文献:1. Armstrong DM (1974) Functional significance of connections of the interior olive. Physiol Rev 54(2): 358–417
    2. Bandyopadhyay PR, Singh SN, Thivierge DP, Annaswamy AM, Leinhos HA, Fredette AR, Beal DN (2008) Synchronization of animal-inspired multiple high-lift fins in an underwater vehicle using olivo-cerebellar dynamics. IEEE J Ocean Eng 33(4): 563–578
    3. Benardo LS, Foster RE (1986) Oscillatory behavior in inferior olive neurons: mechanism, modulation, cell aggregates. Brain Res Bull 17(6): 773–784
    4. Bennett ML, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41: 495–511
    5. Guckenheimer J, Labouriau IS (1993) Bifurcation of the Hodgkin and Huxley equations: a new twist. Bull Math Biol 55(5): 937–952
    6. Isidori A (1985) Nonlinear control systems. Springer, New York
    7. Ito M (1984) Cerebellum and neural control. Raven, New York
    8. Izhikevich EM (2000) Neural excitability, spiking and bursting. Int J Bifurc Chaos 10(6): 1171–1266
    9. Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge
    10. Katori Y, Lang EJ, Onizuka M, Kawato M, Aihara K (2010) Quantitative modeling of spatio-temporal dynamics of inferior olive neurons with a simple conductance-based model. Int J Bifurc Chaos 20(3): 583–603
    11. Kazantsev VB, Nekorkin VI, Makarenko VI, Llinas R (2003) Olivo-cerebellar cluster-based universal control system. PNAS 100(22): 13064–13068
    12. Kazantsev VB, Nekorkin VI, Makarenko VI, Llinas R (2004) Self-referential phase reset based on inferior olive oscillator dynamics. PNAS 101(52): 18183–18188
    13. Lampl I (1994) Characterization of subthreshold oscillations in inferior olivary neurons: mechanisms of generation, mode of operation and their functional role. PhD thesis, Hebrew University, Israel
    14. Lee KW, Singh SN (2009) Adaptive global synchrony of inferior olive neurons. Bioinspiration Biomim 4:036003
    15. Llinas R (2001) I of the vortex: from neurons to self. MIT press, Cambridge
    16. Llinas R (2009) Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience 162: 797–804
    17. Llinas R, Leznik E, Makarenko VI (2004) The olivo-cerebellar circuit as a universal motor control system. IEEE J Ocean Eng 29(3): 631–639
    18. Manor Y, Rinzel J, Segev I, Yarom Y (1997) Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. J Neurophysiol 77: 2736–2752
    19. Pavlov A, Pogromsky A, Wouw N, Nijmeijer H (2004) Convergent dynamics, a tribute to Boris Pavlovich Demidovich. Syst Control Lett 52: 257–261
    20. Schweighofer N, Doya K, Kwato M (1999) Electrophysiological properties of inferior olive neurons: a compartmental model. J Neurophysiol 82(2):804–817
    21. Sotelo C, Llinas R, Baker R (1974) Structural study of inferior olivary nucleus of the cat: morphological correlates of electronic coupling. J Neurophysiol 37(3): 541–559
    22. Velarde MG, Nekorkin VI, Kazantsev VB, Makarenko VI, Llinas R (2002) Modeling inferior olive neuron dynamics. Neural Netw 15(1): 5–10
    23. Wang W, Slotine JE (2005) On partial contraction analysis for coupled nonlinear oscillators. Biol Cybern 92: 38–53
    24. Welsh JP, Llinas R (1997) Some organizing principles for the control of movement based on olivocerebellar physiology. Prog Brain Res 114: 449–461
    25. Wiggins S (2000) Introduction to applied nonlinear dynamical system and chaos. Springer, New York
  • 作者单位:1. Division of Electronic and Information Technology, Kwandong University, Gangwon, 210-701 South Korea2. Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, NV 89154-4026, USA
  • ISSN:1432-1416
文摘
Inferior olive neurons (IONs) have rich dynamics and can exhibit stable, unstable, periodic, and even chaotic trajectories. This paper presents an analysis of bifurcation of periodic orbits of an ION when its two key parameters (a, μ) are varied in a two-dimensional plane. The parameter a describes the shape of the parabolic nonlinearity in the model and μ is the extracellular stimulus. The four-dimensional ION model considered here is a cascade connection of two subsystems (S a and S b ). The parameter plane (a − μ) is delineated into several subregions. The ION has distinct orbit structure and stability property in each subregion. It is shown that the subsystem S a or S b undergoes supercritical Poincare–Andronov–Hopf (PAH) bifurcation at a critical value μ c (a) of the extracellular stimulus and periodic orbits of the neuron are born. Based on the center manifold theory, the existence of periodic orbits in the asymptotically stable S a , when the subsystem S b undergoes PAH bifurcation, is established. In such a case, both subsystems exhibit periodic orbits. Interestingly when S b is under PAH bifurcation and S a is unstable, the trajectory of S a exhibits periodic bursting, interrupted by periods of quiescence. The bifurcation analysis is followed by the design of (i) a linear first-order filter and (ii) a nonlinear control system for the synchronization of IONs. The first controller uses a single output of each ION, but the nonlinear control system uses two state variables for feedback. The open-loop and closed-loop responses are presented which show bifurcation of orbits and synchronization of oscillating neurons.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700