Low-dimensional dynamics of axisymmetric modes in wavy Taylor vortex flow
详细信息    查看全文
  • 作者:Jan Abshagen ; Gerd Pfister
  • 刊名:Lecture Notes in Physics
  • 出版年:2000
  • 出版时间:2000
  • 年:2000
  • 卷:549
  • 期:1
  • 页码:p.84
  • 全文大小:2,914 KB
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical Methods in Physics
    Mathematical and Computational Physics
    Astronomy, Astrophysics and Cosmology
    Atoms, Molecules, Clusters and Plasmas
    Relativity and Cosmology
    Extraterrestrial Physics and Space Sciences
    Condensed Matter
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1616-6361
文摘
The dynamics of the ‘very-low-frequency’ (VLF) mode in moderate aspect ratio flow is experimentally investigated. The VLF mode is an axisymmetric, timedependent mode that occurs in wavy Taylor vortex flow at η = 0.5[25]. For normalised aspect ratios Γ/N < 0.89 a ‘universal’ sequence of states from stationary Taylor vortex flow to chaotic VLF mode has recently been discovered for the 10- to 50-vortex flow [26]. We show that a qualitatively different transition to chaos occurs in the 12-vortex flow compared with flow states having 14 and more vortices. A symmetry-breaking bifurcation that appears within this ‘universal’ sequence of states is found to be crucial for this new scenario. The onset of chaos via an intermittency route is accompanied with the restoring of the original Z 2-symmetry of the system leading to a ‘symmetric’ chaotic attractor for a wide range of aspect ratio. The formation of Shil'nikov-type attractor associated with the unstable symmetric fixed point could be found as well. Further investigations show that a new type of VLF mode appears in the Small-jet regime via a Hopf-bifurcation for slightly larger aspect ratio. We present additionally an examination of the VLF mode in a modulated wavy Taylor vortex flow consisting of Small-jet and axially localised Large-jet mode. The transition to chaos in these two VLF regimes is briefly discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700