On the application of dispersion-hardened SHS electrode materials based on (Ti, Zr)C carbide using electrospark deposition
详细信息    查看全文
  • 作者:O. S. Manakova ; A. E. Kudryashov…
  • 关键词:dispersion ; hardened ceramic electrode materials ; electrospark deposition (ESD) ; kinetics of mass transfer ; phase composition ; structure ; heat resistance ; tribological properties
  • 刊名:Surface Engineering and Applied Electrochemistry
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:51
  • 期:5
  • 页码:413-421
  • 全文大小:1,603 KB
  • 参考文献:1.Verkhoturov, A.D., Podchernyaeva, I.A., Pryadko, L.F., and Egorov, F.F., Elektrodnye materialy dlya elektroiskrovogo legirovaniya (Electrode Materials for the Electrospark Deposition), Moscow: Nauka, 1988.
    2.Gitlevich, A.E., Mikhailov, V.V., Parkanskii, N.Ya., and Revutskii, V.M., Elektroiskrovoe legirovanie metallicheskikh poverkhnostei (Electrospark Alloying of Metal Surfaces), Chisinau: Shtiintsa, 1985.
    3.Burumkulov, F.Kh., Lezin, P.P., Senin, P.V., Ivanov, V.I., Velichko, S.A., and Ionov, P.A., Elektroiskrovye tekhnologii vosstanovleniya i uprochneniya detalei mashin i instrumentov (teoriya i praktika) (Electrospark Technologies of Reconditioning and Strengthening of Workpieces of Motor-Cars and Instruments (Theory and Practice)), Saransk: Krasnyi Oktyabr- 2003.
    4.Lazarenko, N.I., Modern level and perspectives of development of electrospark alloying of metal surfaces, Elektron. Obrab. Mater., 1967, no. 5, pp. 46-8.
    5.Nikolenko, S.V., Pyachin, S.A, and Pugachevskii, M.A., Electrospark alloying of titanium alloy surface, Uproch. Tekhn. Pokr., 2008, no. 5, pp. 35-0.
    6.Luzan, S.A. and Gorbachevskaya, O.M., Determination of dependence of mass transfer of the anode during electrospark deposition of steel surface on the time of treatment, Visnik NTY “XGP-/em>, 2012, vol. 60, no. 966, pp. 53-8.
    7.Bazhin, P.M. and Stolin, A.M., Method of electrospark deposition for strengthening steel 12X18H10T, Stanochnyi Park, 2008, vol. 10, no. 55, pp. 26-7.
    8.Timothy Miller, Jia-Ming Lin, Laurent Pirolli, Laurent Coquilleau, Rajesh Luharuka, and Andrew V. Teplyakov, Investigation of thin titanium carbonitride coatings deposited onto stainless steel, Thin Solid Films, 2012, vol. 522, pp. 193-98.CrossRef
    9.Frangini, S., Masci, A., and Di Bartolomeo, A., Cr7C3-based cermet coating deposited on Stainless steel by electrospark process: Structural characteristics and corrosion behavior, Surf. Coat. Tech., 2002, vol. 149, nos. 2-, pp. 279-86.CrossRef
    10.Korotaev, D.N. and Alimbaeva, B.Sh., Increasing the efficiency of reconditioning of steel workpieces by electrospark alloying, Vestnik SiGADI, 2012, vol. 5, no. 27, pp. 30-4.
    11.Gadalov, V.N., Sal’nikov, V.G., Shestavina, S.V., Alekhin, Yu.G., and Serebrovskaya, L.N., Using self-propagating high-temperature synthesis (SHS) to improve working properties of workpieces and instruments, Vestnik Kurskoi Gos. Sel’skokhoz. Akad., 2012, vol. 1, no. 1, pp. 130-33.
    12.Podchernyaeva, I.A., Panasyuk, A.D., Panashenko, V.M., Grigor’ev, O.N., Kayuk, V.G., Stetsenko, V.P., and Bloshchanevich, A.M., Electroerosion resistivity and structural phase transformations during electrospark and laser alloying of titanium alloy with the composition ceramic based on system of ZrB2-ZrSi2 and TiNCr3C2, Porosh. Metall., 2008, nos. 1, 2, pp. 151-61.
    13.Mikhailov, V.V., Gitlevich, A.E., Verkhoturov, A.D., Mikhailyuk, A.I, Belyakov, A.V., and Konevtsov, L.A., Electrospark alloying of titanium and its alloys, physico-technological aspects and possibility of practical application. Brief review. Part I. Peculiarities of mass transfer, structural and phase transformations in surface layers, their wear and heat resistance, Surf. Eng. Appl. Electrochem., 2013, vol. 49, no. 5, pp. 21-4.CrossRef
    14.Levashov, E.A., Rogachev, A.S., Kurbatkina, V.V., Maksimov, Yu.M., and Yukhvid, V.I., Perspektivnye materialy i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza. Uchebnoe posobie. (Perspective Materials and Technologies of Self-Propagating High-Temperature Synthesis. A Handbook), Moscow: Mos. Inst. Stalei Splavov, 2011.
    15.Rogachev, A.S. and Mukas’yan, A.S., Gorenie dlya sinteza materialov (Burning for the Synthesis of Materials), Moscow: Fizmatlit, 2012.
    16.Merzhanov, I.P., Samorasprostranyayushchiisya vysokotemperaturnyi sintez (Self-Propagating HighTemperature Synthesis), Fiz. Khim. Sovrem. Probl., 1983.
    17.Merzhanov, A.G., Borovinskaya, I.P., Yukhvid, V.I., and Ratnikov, V.I. Novye metody polucheniya vysokotemperaturnykh materialov, osnovannye na gorenii (New Methods of Manufacturing of High Temperature Materials Based on Burning), in Nauch. Osnovy Materialoved., Ed. Arzamasov, B.N., Moscow: Nauka, 1981.
    18.Boginskii, L.S., Sarantsev, V.V., and Khina, B.B., Manufacturing of electrodes for the electrospark alloying of workpieces with covering using the technology of a dry isostatic pressing and SHS, Tekh. Mashinostr., 2007, no. 1, pp. 37-8.
    19.Reut, O.P., Sarantsev, V.V., Khina, B.B., and Markova, L.V., Application of self-propagating high-temperature synthesis and electrospark treatment for the deposition of composite materials, Uprochn. Tekhn. Pokr., 2007, no. 12, pp. 49-6.
    20.Panteleenko, F.I., Stolin, A.M., Markova, L.V., Sarantsev, V.V., Bazhin, P.M., and Azarenko, E.L., Deposition of carbide coatings on a cutting instrument using self-propagating high-temperature synthesis and electrospark alloying, Uprochn. Tekhn. Pokr.,
  • 作者单位:O. S. Manakova (1)
    A. E. Kudryashov (1)
    E. A. Levashov (1)

    1. National University of Science and Technology “MISiS- Leninsky pr. 4, Moscow, 119049, Russia
  • 刊物类别:Engineering
  • 刊物主题:Manufacturing, Machines and Tools
    Russian Library of Science
  • 出版者:Allerton Press, Inc. distributed exclusively by Springer Science+Business Media LLC
  • ISSN:1934-8002
文摘
This work studies the kinetics of the mass transfer of composite dispersion-hardened electrode materials Ti-Zr-C-binder in the process of electrospark deposition (ESD), as well as the structure, composition and properties of the deposited coatings. Titanium alloy VT3-1 and instrumental steel X12MF are used as the substrate materials (cathodes). The coatings were deposited by a universal benchmark ALIER-METAL 2002 in two different processing modes (0.06 and 0.12 J). The composition and structure of the resulting coatings were studied. The coatings formed are multiphase and are composed of carbide (Ti, Zr) C and solid solutions based on α-Ti and β-Ti (when applied to a titanium substrate) or α-Fe and γ-Fe (coatings on steel). The properties of the coatings such as thickness, continuity, microhardness, roughness, heat resistance and tribological properties were determined. The deposited coatings are characterized by a high continuity up to 100%, thickness of 10-8 μm and microhardness up to 11.8 GPa. The ESD was found to increase the wear and heat resistance of the samples on titanium alloy VT3-1 and steel X12MF. Keywords dispersion-hardened ceramic electrode materials electrospark deposition (ESD) kinetics of mass transfer phase composition structure heat resistance tribological properties

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700