Automated microfluidic processing platform for multiplexed magnetic bead immunoassays
详细信息    查看全文
  • 作者:Lawrence A. Sasso (1)
    Ian H. Johnston (1)
    Mingde Zheng (1)
    Rohit K. Gupte (1)
    Akif ündar (2)
    Jeffrey D. Zahn (3)
  • 关键词:Immunoassay ; Microfluidic ; Biosensor ; Magnetic ; Fluorocytometry
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:13
  • 期:4
  • 页码:603-612
  • 全文大小:620KB
  • 参考文献:1. Andersson H, van der Wijngaart W et al (2000) Micromachined flow-through filter-chamber for chemical reactions on beads. Sens Actuators B Chem 67(1-):203-08 CrossRef
    2. Aran K, Fok A et al (2011) Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery. Lab Chip 11(17):2858-868 CrossRef
    3. Breadmore MC, Wolfe KA et al (2003) Microchip-based purification of DNA from biological samples. Anal Chem 75(8):1880-886 CrossRef
    4. Choi JW, Oh KW et al (2002) An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip 2(1):27-0 CrossRef
    5. Diercks AH, Ozinsky A et al (2009) A microfluidic device for multiplexed protein detection in nano-liter volumes. Anal Biochem 386(1):30-5 CrossRef
    6. Do J, Ahn CH (2008) A polymer lab-on-a-chip for magnetic immunoassay with on-chip sampling and detection capabilities. Lab Chip 8(4):542-49 CrossRef
    7. Duffy DC, McDonald JC et al (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974-984 CrossRef
    8. Garcia AA, Bonen M (1999) Bioseparation process science. Wiley-Blackwell, UK
    9. Herrmann M, Veres T et al (2006) Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA. Lab Chip 6(4):555-60 CrossRef
    10. Iwai K, Wei-Heong T et al (2011) A resettable dynamic microarray device. Biomed Microdev 13:1089-094 CrossRef
    11. Jeong Y, Choi K et al (2008) PDMS micro bead cage reactor for the detection of alpha feto protein (AFP). Sens Actuators B Chem 128(2):349-58 CrossRef
    12. Oleschuk RD, Shultz-Lockyear LL et al (2000) Trapping of bead-based reagents within microfluidic systems: on-chip solid-phase extraction and electrochromatography. Anal Chem 72(3):585-90 CrossRef
    13. Peyman SA, Iles A et al (2008) Rapid on-chip multi-step (bio)chemical procedures in continuous flow—manoeuvring particles through co-laminar reagent streams. Chem Commun 14(10):1220-222 CrossRef
    14. Peyman SA, Iles A et al (2009) Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Lab Chip 9(21):3110-117 CrossRef
    15. Sasso LA, Undar A et al (2010) Autonomous magnetically actuated continuous flow microimmunofluorocytometry assay. Microfluid Nanofluid 9(2):253-65 CrossRef
    16. Sasso LA, Zahn JD (2009) The thirteenth international conference on miniaturized systems for chemistry and life sciences. Jeju, Korea
    17. Sato K, Tokeshi M et al (2000) Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip. Anal Chem 72(6):1144-147 CrossRef
    18. Sato K, Yamanaka M et al (2004) Microchip-based enzyme-linked immunosorbent assay (microELISA) system with thermal lens detection. Lab Chip 4(6):570-75 CrossRef
    19. Shevkoplyas SS, Siegel AC et al (2007) The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip 7(10):1294-302 CrossRef
    20. Tanaka Y, Tsutsui S et al (2011) Hybrid optical tweezers for dynamic micro-bead arrays. Opt Express 19(16):15445-5451 CrossRef
    21. Thompson JA, Du XG et al (2010) Polymeric microbead arrays for microfluidic applications. J Micromechan Microeng 20(11)
    22. Yang S, Undar A et al (2007) Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms. Lab Chip 7:588-95 CrossRef
    23. Yoo SK, Kim YM et al (2011) Bead packing and release using flexible polydimethylsiloxane membrane for semi-continuous biosensing. Artif Organs 35(7):E136–E144 CrossRef
    24. Yun KS, Lee D et al (2006) A microfluidic chip for measurement of biomolecules using a microbead-based quantum dot fluorescence assay. Measur Sci Technol 17(12):3178-183 CrossRef
  • 作者单位:Lawrence A. Sasso (1)
    Ian H. Johnston (1)
    Mingde Zheng (1)
    Rohit K. Gupte (1)
    Akif ündar (2)
    Jeffrey D. Zahn (3)

    1. BioMEMS Laboratory, Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
    2. Penn State Hershey Pediatric Cardiovascular Research Center, Department of Pediatrics, Surgery, and Bioengineering, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Children’s Hospital, Hershey, PA, 17033-0850, USA
    3. Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Room 311, 599 Taylor Road, Piscataway, NJ, 08854, USA
  • ISSN:1613-4990
文摘
A microfluidic platform is presented which fully automates all incubation steps of a three-stage, multiplexed magnetic bead immunoassay, such as the Luminex? xMAP technology. Magnetic actuation is used to transfer the microbeads between co-infused adjacent laminar flow streams to transport the beads into and out of incubation and wash solutions, with extended incubation channels to allow sufficient bead incubation times (1-0?min, commonly 5?min per stage) to enable high-sensitivity. The serial incubation steps of the immunoassay are completed in succession within the device with no operator interaction, and the continuous flow operation with magnetic bead transfer defines the incubation sequencing requiring no external fluidic controls beyond syringe pump infusion. The binding kinetics of the assay is empirically characterized to determine the required incubation times for specific assay sensitivities in the range 1?pg/ml to 100?ng/ml. By using a Luminex? xMAP duplex assay, concurrent detection of IL-6 and TNF-α was demonstrated on-chip with a detection range 10?pg/ml to 1?ng/ml. This technology enables rapid automation of magnetic microbead assays, and has the potential to perform continuous concentration monitoring.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700