Fano Resonances Induced by Strong Interactions Between Dipole and Multipole Plasmons in T-Shaped Nanorod Dimer
详细信息    查看全文
  • 作者:Yun Binfeng (1)
    Hu Guohua (1)
    Cong Jiawei (1)
    Cui Yiping (1)
  • 关键词:Surface plasmon ; Fano resonance ; Dimer ; Multipole
  • 刊名:Plasmonics
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:9
  • 期:3
  • 页码:691-698
  • 全文大小:
  • 参考文献:1. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 5:899-03 CrossRef
    2. Yanchuk BL, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterialsthe Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707-15 CrossRef
    3. Ye J, Wen F, Sobhani H, Lassiter JB, Van Dorpe P, Nordlander P, Halas NJ (2012) Plasmonic nanoclusters: near field properties of the fano resonance interrogated with SERS. Nano Lett 12:1660-667 CrossRef
    4. Liu S, Yang Z, Liu R, Li X (2011) High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity. J Phys Chem C 115:24469-4477 CrossRef
    5. Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchalkov VV (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11:391-97 CrossRef
    6. Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable fano resonance. Nano Lett 8:3983-988 CrossRef
    7. Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q (2011) Plasmonic EIT-like switching in bright-dark-bright plasmon resonators. Opt Express 19:5970-978 CrossRef
    8. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103-107 CrossRef
    9. Zhang J, Xiao S, Jeppesen C, Kristensen A, Mortensen NA (2010) Electromagnetically induced transparency in metamaterials at near-infrared frequency. Opt Express 18:17187-7192 CrossRef
    10. Liu N, Langguth L, Weiss T, K?stel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758-62 CrossRef
    11. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:47401 CrossRef
    12. Fang Z, Cai J, Yan Z, Nordlander P, Halas NJ, Zhu X (2011) Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett 11:4475-479 CrossRef
    13. Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in fano resonances. Nano Lett 10:1694-701 CrossRef
    14. Shu J, Gao W, Xu Q (2013) Fano resonance in concentric ring apertures. Opt Express 21:11101-1106 CrossRef
    15. Zhang Y, Jia TQ, Zhang HM, Xu ZZ (2012) Fano resonances in disk–ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode. Opt Lett 37:4919-921 CrossRef
    16. Niu L, Zhang JB, Fu YH, Kulkarni S, Lukyanchuk B (2011) Fano resonance in dual-disk ring plasmonic nanostructures. Opt Express 19:22974-2981 CrossRef
    17. Habteyes TG, Dhuey S, Cabrini S, Schuck PJ, Leone SR (2011) Theta-shaped plasmonic nanostructures: bringing “dark-multipole plasmon resonances into action via conductive coupling. Nano Lett 11:1819-825 CrossRef
    18. Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch GAE, Moshchalkov VV, Van Dorpe P, Nordlander P, Maier SA (2010) Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4:1664-670 CrossRef
    19. Aydin K, Pryce IM, Atwater HA (2010) Symmetry breaking and strong coupling in planar optical metamaterials. Opt Express 18:13407-3417 CrossRef
    20. Hao F, Nordlander P, Sonnefraud Y, Van Dorpe P, Maier SA (2009) Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3:643-52 CrossRef
    21. Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Van Dorpe P, Nordlander P, Maier SA (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9:1663-667 CrossRef
    22. Fu YH, Zhang JB, Yu YF, Yanchuk BL (2012) Generating and manipulating higher order fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6:5130-137 CrossRef
    23. Wu D, Jiang S, Liu X (2012) Fano-like resonances in asymmetric homodimer of gold elliptical nanowires. J Phys Chem C 116:13745-3748 CrossRef
    24. Pena-Rodríguez O, Pal U, Campoy-Quiles M, Rodríguez-Fernandez L, Garriga M, Alonso MI (2011) Enhanced fano resonance in asymmetrical Au:Ag heterodimers. J Phys Chem C 115:6410-414 CrossRef
    25. Brown LV, Sobhani H, Lassiter JB, Nordlander P, Halas NJ (2010) Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4:819-32 CrossRef
    26. Shafiei F, Monticone F, Le KQ, Liu X, Hartsfield T, Alu A, Li X (2013) subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat. Nanotechnology 8:95-9
    27. Lassiter JB, Sobhani H, Knight MW, Mielczarek WS, Nordlander P, Halas NJ (2012) Designing and deconstructing the fano lineshape in plasmonic nanoclusters. Nano Lett 12:1058-062 CrossRef
    28. Rahmani M, Lukiyanchuk B, Ng B, Tavakkoli KG A, Liew YF, Hong MH (2011) Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. Opt Express 19:4949-956 CrossRef
    29. Yang Z, Zhang Z, Zhang L, Li Q, Hao Z, Wang Q (2011) Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers . Opt Lett 36:1542-544 CrossRef
    30. Yang Z, Zhang Z, Hao Z, Wang Q (2011) Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter. Appl Phys Lett 99:81107 CrossRef
    31. Wang J, Fan C, He J, Ding P, Liang E, Xue Q (2013) Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Opt Express 21:2236-244 CrossRef
    32. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370-379 CrossRef
  • 作者单位:Yun Binfeng (1)
    Hu Guohua (1)
    Cong Jiawei (1)
    Cui Yiping (1)

    1. Advanced Photonics Center, Southeast University, Nanjing, China, 210096
  • ISSN:1557-1963
文摘
A simple T-shaped plasmonic nanostructure composed of two perpendicular coupled nanorods is proposed to produce strong Fano resonances. By the near-field coupling between the “bright-dipole and “dark-quadrupole plasmons of the nanorods, a deep Fano dip is formed in the extinction spectrum, which can be well fitted by the Fano interference model. The effects of the geometry parameters including nanorod length, coupling gap size, and coupling location to the Fano resonances are analyzed in detail, and a very high refractive index sensitivity is achieved by the Fano resonance. Also by adjusting the incident polarization direction, double Fano resonances can be formed by the interferences of the dipole, quadrupole, and hexapole plasmons. The proposed nanorod dimer structure is agile, and a trimer which supports double Fano resonances can be easily formed by introducing a third perpendicular coupled nanorod. The proposed T-shaped nanorod dimer structure may have applications in the fields of biological sensing and plasmon-induced transparency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700