Laser microsampling and multivariate methods in provenance studies of obsidian artefacts
详细信息    查看全文
文摘
The provenance of obsidian artefacts and raw materials was studied by the multivariate statistical analysis of forty-five samples using elemental composition data obtained by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). One ICP-MS instrument equipped with a quadrupole mass filter and the other based on a time-of-flight analyser were coupled to the same type of laser ablation device (Nd:YAG 213 nm), thereby affording a comparison of the different mass spectrometers in terms of precision and verification of the consistency of the results. The influence of surface roughness (polished raw material vs artefact) and microinhomogeneity on the LA-ICP-MS signal was studied under the optimised working conditions of the laser ablation device. Principal component analysis, correspondence analysis, independent component analysis, multi-dimensional scaling, Sammon mapping and fuzzy cluster analysis were applied and compared in order to reveal statistically significant compositional differences between particular geological sites and to disclose the provenance of the raw materials used in manufacture of the artefacts. Twenty-seven artefacts and eighteen raw material samples from natural resources in the Czech Republic, Slovakia, Italy, Greece, Syria, Iraq, Turkey, Mexico and Nicaragua were examined with special attention focused on samples from Moravia (Czech Republic) and some Near East sites (Tell Arbid, Tell Asmar). The Carpathian origin of the obsidian artefacts was investigated in the Moravian samples using the Pb, Rb and U contents. The Near East samples were classified according to their Sr, Ba, Zr and REE contents as per-alkaline obsidians (Bingöl A/Nemrut Dağ) originating from Southeast Anatolia.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700