The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines
详细信息    查看全文
  • 作者:Ruo-Chan Chen (1)
    Pan-Pan Yi (1)
    Rong-Rong Zhou (1)
    Mei-Fang Xiao (1)
    Ze-Bing Huang (1)
    Dao-Lin Tang (2)
    Yan Huang (1)
    Xue-Gong Fan (1)
  • 关键词:HMGB1 ; RAGE ; Hepatocellular carcinoma ; Invasion ; Migration
  • 刊名:Molecular and Cellular Biochemistry
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:390
  • 期:1-2
  • 页码:271-280
  • 全文大小:2,993 KB
  • 参考文献:1. Jemal A, Siegel R, Xu J et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277-00 CrossRef
    2. Yan W, Chang Y, Liang X et al (2012) High-mobility group box1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology 55:1863-875 CrossRef
    3. Basta GNT, De Simone P, Del Turco S et al (2011) What is the role of the receptor for advanced glycation end products-ligand axis in liver injury? Liver Transpl 17:633-40 CrossRef
    4. Taguchi A, Blood DC, del Toro G et al (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405:354-60 CrossRef
    5. Neeper M, Schmidt AM, Brett J et al (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267:14998-5004
    6. Schmidt AMVM, Gerlach M, Brett J et al (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267:14987-4997
    7. Volp K, Brezniceanu ML, Bosser S et al (2006) Increased expression of high mobility group box1 (HMGB1) is associated with an elevated level of the antiapoptotic c-IAP2 protein in human colon carcinomas. Gut 55:234-42 CrossRef
    8. Sims GP, Rowe DC, Rietdijk ST et al (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367-88 CrossRef
    9. Jarnagin W, Chapman WC, Curley S et al (2010) Surgical treatment of hepatocellular carcinoma: expert consensus statement. HPB (Oxford) 12:302-10
    10. Yaser AM, Huang Y, Zhou RR et al (2012) The role of receptor for advanced glycation end products (RAGE) in the proliferation of hepatocellular carcinoma. Int J Mol Sci 13:5982-997 CrossRef
    11. Aradhya S, Nelson DL (2001) NF-kappaB signaling and human disease. Curr Opin Genet Dev 11:300-06 CrossRef
    12. Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107:7-1 CrossRef
    13. Baldwin AS Jr (2001) Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest 107:3- CrossRef
    14. Cho HAPI, Kim TW, Oh YK et al (2009) Suppression of hepatitis B virus-derived human hepatocellular carcinoma by NF-kappaB-inducing kinase-specific siRNA using liver-targeting liposomes. Arch Pharm Res 32:1077-086 CrossRef
    15. Wang C, Lu Y, Chen Y et al (2009) Prognostic factors and recurrence of hepatitis B-related hepatocellular carcinoma after argon-helium cryoablation: a prospective study. Clin Exp Metastasis 26:839-48 CrossRef
    16. Okamoto T, Sanda T, Asamitsu K (2007) NF-kappa B signaling and carcinogenesis. Curr Pharm Des 13:447-62 CrossRef
    17. He Q, You H, Li XM et al (2012) HMGB1 promotes the synthesis of Pro-IL-1β and pro-IL-18 by activation of p38 MAPK and NF-κB through receptors for advanced glycation end-products in macrophages. Asian Pac J Cancer Prev 13:1365-370 CrossRef
    18. Sasahira T, Kirita T, Oue N et al (2008) High mobility group box-1-inducible melanoma inhibitory activity is associated with nodal metastasis and lymphangiogenesis in oral squamous cell carcinoma. Cancer Sci 99:1806-812
    19. Shi GM, Ke AW, Zhou J et al (2010) CD151 modulates expression of matrix metalloproteinase 9 and promotes neoangiogenesis and progression of hepatocellular carcinoma. Hepatology 52:183-96 CrossRef
    20. Li Y, Tang ZY, Ye SL et al (2001) Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol 7:630-36
    21. Li Y, Tang Y, Ye L et al (2003) Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray. J Cancer Res Clin Oncol 129:43-1 CrossRef
    22. DeNardo DG, Andreu P, Coussens LM (2010) Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev 29:309-16 CrossRef
    23. Lotze MT, Tracey KJ (2005) High-mobility group box1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331-42 CrossRef
    24. Tang D, Kang R, Zeh HJ et al (2010) High-mobility group box1 and cancer. Biochim Biophys Acta 1799:131-40 CrossRef
    25. Krysko O, Love Aaes T, Bachert C et al (2013) Many faces of DAMPs in cancer therapy. Cell Death Dis 4:e631 CrossRef
    26. Yang H, Rivera Z, Jube S et al (2010) Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box1 protein release and resultant inflammation. Proc Natl Acad Sci USA 107:12611-2616 CrossRef
    27. Zhou RR, Zhao SS, Zou MX et al (2011) HMGB1 cytoplasmic translocation in patients with acute liver failure. BMC Gastroenterol 11:21 CrossRef
    28. Jiang W, Wang Z, Li X et al (2012) High-mobility group box1 is associated with clinicopathologic features in patients with hepatocellular carcinoma. Pathol Oncol Res 18:293-98 CrossRef
    29. Jung JH, Park JH, Jee MH et al (2011) Hepatitis C virus infection is blocked by HMGB1 released from virus-infected cells. J Virol 85:9359-368 CrossRef
    30. Geroldi D, Falcone C, Emanuele E et al (2005) Decreased plasma levels of soluble receptor for advanced glycation end-products in patients with essential hypertension. J Hypertens 23:1725-729 CrossRef
    31. Tesarova P, Kalousova M, Jachymova M et al (2007) Receptor for advanced glycation end products (RAGE)–soluble form (sRAGE) and gene polymorphisms in patients with breast cancer. Cancer Invest 25:720-25 CrossRef
    32. Jang Y, Kim JY, Kang SM et al (2007) Association of the Gly82Ser polymorphism in the receptor for advanced glycation end products (RAGE) gene with circulating levels of soluble RAGE and inflammatory markers in nondiabetic and nonobese Koreans. Metabolism 56:199-05 CrossRef
    33. Kalea AZ, See F, Harja E et al (2010) Alternatively spliced RAGEv1 inhibits tumorigenesis through suppression of JNK signaling. Cancer Res 70:5628-638 CrossRef
  • 作者单位:Ruo-Chan Chen (1)
    Pan-Pan Yi (1)
    Rong-Rong Zhou (1)
    Mei-Fang Xiao (1)
    Ze-Bing Huang (1)
    Dao-Lin Tang (2)
    Yan Huang (1)
    Xue-Gong Fan (1)

    1. Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, 410008, China
    2. Department of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15219, USA
  • ISSN:1573-4919
文摘
High mobility group protein box1 (HMGB1) and its receptor—receptor for advanced glycation end products (RAGE) are pivotal factors in the development and progression of many types of tumor, but the role of HMGB1-RAGE axis in hepatocellular carcinoma (HCC) especially its effects on metastasis and recurrence remains obscure. Here, we report the role of HMGB1-RAGE axis in the biological behaviors of HCC cell lines and the underlying molecular mechanism. We show that the expressions of HMGB1, RAGE, and extracellular HMGB1 increase consistently according to cell metastasis potentials, while the concentration of soluble form of RAGE (sRAGE) is inversely related to metastasis potential of HCC cells. Furthermore, our data show that rhHMGB1 promotes cellular proliferation, migration, and invasion, and increases the level of nuclear factor kappa B (NF-κB), while administrations of HMGB1-siRNA, RAGE-siRNA, anti-HMGB1 neutralizing antibody, anti-RAGE neutralizing antibody, and sRAGE inhibit cellular proliferation, migration, and invasion. Moreover, we also demonstrate that the expression of NF-кB is inhibited by knockdown of HMGB1 or RAGE. Collectively, these data demonstrate that HMGB1 activates RAGE signaling pathways and induces NF-кB activation to promote cellular proliferation, invasion, and metastasis, in HCC cell lines. Taken together, HMGB1-RAGE axis may become a potential target in HCC therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700