Concentrations of potentially toxic elements in soils and vegetables from the macroregion of São Paulo, Brazil: availability for plant uptake
详细信息    查看全文
  • 作者:Sabrina Novaes dos Santos-Araujo…
  • 关键词:Soil contamination ; Metals ; Principal component analysis ; Prediction models ; Permitted limits
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:188
  • 期:2
  • 全文大小:1,154 KB
  • 参考文献:Abreu, C. A., Abreu, M. F., & Andrade, J. C. (2001). Determination of copper, iron, manganese, zinc, cadmium, chromium, nickel and lead in soil using the solution of DTPA pH 7,3. In B. van Raij, J. C. Andrade, H. Cantarella, & J. A. Quaggio (Eds.), Chemical analysis to evaluate the fertility of tropical soils (pp. 240–250). Campinas: Instituto Agronômico (in Portuguese).
    Ajmone-Marsan, F., & Biasioli, M. (2010). Trace elements in soil of urban areas. Water Air, and Soil Pollution, 213, 121–143.CrossRef
    Alloway, B. J. (1990). Heavy metals in soils (p. 339). Glasgow: Blackie Academic & Professional.
    Alloway, B. J. (2008). Zinc in soils and crop nutrition. Second edition, published by IZA and IFA Brussels, Belgium and Paris, France, p. 45.
    Anderson, J. M., & Ingram, J. S. I. (1992). Tropical soil biology and fertility: a handbook of methods. Wallingford: CAB International.
    ANVISA—Agência Nacional de Vigilância Sanitária. Decreto no 55.871, de 26 de março de 1965. Disponível em: http://​www.​anvisa.​gov.​br/​legis/​decretos/​55871_​65.​htm . Accessed in 17 Aug 2013.
    Araújo, G. C. L., Gonzalez, M. H., Ferreira, A. G., Nogueira, A. R. A., & Nóbrega, J. A. (2002). Effect of acid concentration on closed-vessel microwave-assisted digestion of plant materials. Spectrochimica Acta part B: Atomic Spectroscopy, Oxford, 57, p. 2121–2132.
    Barber, S. A. (1995). Soil nutrient bioavailability: a mechanistic approach (2nd ed., p. 414). New York: Wiley.
    Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.CrossRef
    Breiman L. (2011). Random forests, Machine Learning, 45, 5–32.
    Camargo, A. M. M. P. (2008a). Geographical distribution of vegetable production in the State of São Paulo. Informações Econômicas, São Paulo, v. 38, n.1, p.28–35. (in Portuguese).
    Chary, N. S., Kamala, C. T., & Raj, D. S. S. (2008). Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environmental Safety, 69(3), 513–524.CrossRef
    Chopin, E. I. B., & Alloway, B. J. (2007). Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Riotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water, Air, and Soil Pollution, 182, 245–261.CrossRef
    Companhia De Tecnologia De Saneamento Ambiental - CETESB, SÃO PAULO. Dispõe sobre a aprovação dos Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo - 2005, em substituição aos Valores Orientadores de 2001, e dá outras providências. Diário Oficial do Estado. Secretaria do Meio Ambiente, São Paulo, 115(227). p. 22-23. Retificação 13.12.2005, 115(233) p.42. (Technical Report). (In Portuguese)
    Companhia De Tecnologia De Saneamento Ambiental. Establishment report of guiding values for soil and groundwater in São Paulo. São Paulo: Cetesb, 2001. 247p. (Technical Report). (in Portuguese).
    Conselho Nacional Do Meio Ambiente. Resolução n° 420 de 28 de Dezembro de 2009. Rules on criteria and guiding soil quality values for the presence of chemical substances and establishes guidelines for environmental management of areas contaminated by these substances as a result of human activities. Brasilia, 2009, published in the Official Gazette of 30 December 2009. Available at: http://​www.​mma.​gov.​br/​port/​conama/​legiabre.​cfm?​codlegi=​620 . Accessed in: 05 Dec 2013. (in Portuguese)
    Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 11, 2783–2792.CrossRef
    R Development Core Team (2008). An introduction to R. http://​www.​r-project.​org/​ .
    Empresa Brasileira De Pesquisa Agropecuária—Embrapa. National Research Center for Vegetables (2009). Available at: http://​www.​cnph.​embrapa.​br . Accessed in 05 Dec 2011. (in Portuguese).
    Fernandes, R. B. A., Luz, V. W., Fontes, M. P. F., & Fontes, L. E. F. (2007). Evaluation of the concentration of heavy metals in crops in the state of Minas Gerais. Journal of Agricultural and Environmental Engineering, 11(1), pp. 81–93. (in Portuguese).
    Fontes, M. P. F., & Weed, S. B. (1991). Iron oxides in selected Brazilian oxisols: I. Mineralogy. Soil Science Society of America Journal, Madison 55, 1143–1150.
    Fortin, D., Leppard, G. G., & Tessier, A. (1993). Characteristics of lacustrine diagenetic iron oxyhydroxides. Geochimica Cosmochimica Acta, London, 57, pp. 4391–4404.
    Gee, G. W., & Or, D. (2002). Particle-size analysis. In: Dane, J.H., & Toop, G.C. (Ed.).Methods of soil analysis. Madison; Physical methods, pp. 255–293.
    Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern Recognition Letters, 27, 294–300.CrossRef
    Guerra, F., Trevizam, A. R., Muraoka, T., Marcante, N. C., & Canniatti-Brazaca, S. G. (2012). Heavy metals in vegetables and potential risk for human health. Scientia Agricola, 69(1), 54–60.
    Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference and prediction, 2 ed., Springer, pp. 587–604.
    Instituto Brasileiro De Geografia E Estatística. Estimativa IBGE 2013. 2008–2009. IBGE, Rio de Janeiro, Brasil. Página visitada em 03 de março de 2014.
    Intawongse, M., & Dean, J. (2006). Uptake of potentially toxic metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Additives and Contaminants, 23, 36–48.CrossRef
    Itanna, F. (2002). Metals in leafy vegetables grown in Addis Ababa and toxicological implications. Ethiopian Journal of Health Development, 6, 295–302.
    Kalis, E. J. J., Temminghoff, E. J. M., Visser, A., Van Riemsdijk, W. H. (2007). Metal uptake by Lolium perenne in contaminated soils using a four-step approach. Environmental Toxicology and Chemistry. New York, v. 26, pp. 335–45.
    Lawler, J. J., White, D., Neilson, R. P., & Blaustein, A. R. (2006). Predicting climate induced range shifts: model differences and model reliability. Global Change Biology, 12, 1568–1584.CrossRef
    Lawrence, R. L., Wood, S. D., & Sheley, R. L. (2006). Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sensing of Environment, 100, 356–362.CrossRef
    Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.
    Loeppert, R. L., & Inskeep, W. P. (1996). Iron. In: J.M. Bigham (Ed.). Methods of soil analysis. Madison: Soil Science Society of America; American Society of Agronomy, cap.24, pt 3. pp. 639–664.
    Madrid, F., Reinoso, R., Florido, M. C., Díaz Barrientos, E., Ajmone-Marsan, F., Davidson, C. M., & Madrid, L. (2007). Estimating the extractability of potentially toxic elements in urban soils: a comparison of several extracting solutions. Environmental Pollution, 147, 713–722.CrossRef
    Manly, B. F. J. (1994). Multivariate statistical methods (2nd ed., p. 215). London: Chapman & Hall.
    Mckenzie, R. M. (1979). Proton release during adsorption of heavy metal ions by a hydrous manganese dioxide. Geochemicha et Cosmochimica Acta, 43, 1855–1857.CrossRef
    Mehra, J. A., & Jackson, M. L. (1960). Iron oxides removal from soils and clays by dithionite–citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 5, 317–327.
    Melo, L. C. A., Alleoni, L. R. F., & Swartjes, F. A. (2011). Derivation of critical soil cadmium concentrations for the state of São Paulo, Brazil, based on human health risks. Atlanta: Human and Ecological Risk Assessment, v. 17, pp. 1124–1141.
    Peijnenburg, W., Baerselman, R., De Groot, A., Jager, T., Leenders, D., Posthuma, L., & Van Veen, R. (2000). Quantification of metal bioavailability for lettuce (Lactuca sativa L.) in field soils. Archives of Environmental Contamination and Toxicology, 39, 420–430.CrossRef
    Peters, J., Verhoest, N. E. C., Samson, R., Boeckx, P., & De Baets, B. (2008). Wetland vegetation distribution modeling for the identification of constraining environmental variables. Landscape Ecology, 23, 1049–1065.CrossRef
    Prasad, A. M., Iverson, L. R., & Liaw, A. (2006). Newer classification and regression tree techniques: bagging and random forests for ecologic prediction. Ecosystems, 9, 181–199.CrossRef
    Rhoton, F. E. (2000). Influence of time on soil response to no-till practices. Soil Science Society of America, 64, 700–709.CrossRef
    Rieuwerts, J. S., Ashmore, M. R., Farago, M. E., & Thornton, I. (2006). The influence of soil characteristics on the extractability of Cd, Pb and Zn in upland and moorland soils. Science of the Total Environment, 366, 864–875.CrossRef
    Rodrigues, S. M., Henriques, B., Ferreira Da Silva, E., Pereira, M. E., Duarte, A. C., & Römkens, P. F. A. M. (2010). Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: part I e the role of key soil properties in the variation of contaminants reactivity. Chemosphere, 81, 1549–1559.CrossRef
    Rodrigues, S. M., Cruz, N., Coelho, C., Henriques, B., Carvalho, L., Duarte, A. C., Pereira, M. E., & Römkens, P. F. A. M. (2013). Risk assessment for Cd, Cu, Pb and Zn in urban soils: chemical availability as the central concept. Environmental Pollution, 183, 234–242.CrossRef
    Römkens, P. F. A. M., Guo, H. Y., Chu, C. L., Liu, T. S., Chiang, C. F., & Koopmans, G. F. (2009a). Characterization of soil metal pools in paddy fields in Taiwan: chemical extraction and solid-solution partitioning. Journal of Soil and Sediments, 9(3), 216–289.CrossRef
    Römkens, P. F. A. M., Guo, H. Y., Chu, C. L., Liu, T. S., Chiang, C. F., & Koopmans, G. F. (2009b). Characterization of soil heavy metal pools in paddy fields in Taiwan: chemical extraction and solid-solution partitioning. Journal of Soils and Sediments, 3, 216–228.CrossRef
    Sauvé, S., Hendershot, W., & Allen, H. E. (2000). Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environmental Science and Technology, 7, 1125–1131.CrossRef
    Statistical Yearbook Of The People’s Republic Of China, National Bureau of Statistics of the People’s Republic of China (2011), http://​www.​stats.​gov.​cn/​tjsj/​Ndsj/​2011/​indexch.​htm .
    Statsoft (2005). Statistica 7.0 software. Tucksa, USA: StatSoft.
    Sterckeman, T., Duquene, L., Perriguey, J., & Morel, J. L. (2005). Quantifying the effect of rhizosphere processes on the availability of soil cadmium and zinc. Plant and Soil, 276, 335–345.CrossRef
    Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry. Chemical equilibria and rates in natural waters. 3rd ed. New York: Wiley, 1022.
    Swartjes, F. A., Dirven-Van Breemen, E. M., Otte, P. F., Van Beelen, P., Rikken, M. G. J., Tuinstra, J., Spijker, J., Lijzen, J. P. A. (2007). Human health risks due to consumption of vegetables from contaminated sites. Bilthoven, the Netherlands: RIVM. (RIVM report 711701040).
    Szolnoki, Z., Farsang, A., et al. (2013). Cumulative impacts of human activities on urban garden soils: origin and accumulation of metals. Environmental Pollution, 177, 106–115.CrossRef
    Tessier, A., Fortin, D., Belzile, N., Devitre, R. R., & Leppard, G. G. (1996). Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between .eld and laboratory measurements. Geochimica et Cosmochimica Acta, 60(3), 387–404.CrossRef
    United States Environmental Protection Agency—USEPA. Method 3051a—Microwave assisted acid digestion of sediments, sludges, soils, and oils. 1998. Available at: http://​www.​epa.​gov/​SW-846/​pdfs/​3051a.​pdf . Accessed in 13 Dec 2011.
    Valarini, P. J., Diaz Alvarez, M., Gascó, J. M., Guerrero, F., & Tokeshi, H. (2002). Integrated evaluation of soil quality after the incorporation of organic matter and microorganisms. Brazilian Journal of Microbiology, 33, 53–58.CrossRef
    van Raij, B. (2011). Soil fertility and nutrient management. Piracicaba: International Plant Nutrition Institute, p. 420. (in Portuguese).
    Wu, J., Hd, L., Duan, X. Y., Ding, Y., Wu, H. T., Yf, B., & Sun, X. (2009). Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature. Bioinformatics, 25, 30–35.CrossRef
    Yang, X.-E., Chen, W.-R., & Feng, Y. (2007). Improving human micronutrient nutrition through biofortification in the soil–plant system: China as a case study. Environmental Geochemistry and Health, 29, 413–428.CrossRef
    Yu, T. R. (1997). Chemistry of variable charge soils (p. 505). New York: Oxford University Press.
  • 作者单位:Sabrina Novaes dos Santos-Araujo (1)
    Luís Reynaldo Ferracciú Alleoni (2)

    1. College of Agriculture Luiz de Queiroz (ESALQ/USP), University of São Paulo, Av. Pádua Dias, 11, C.P. 9, Piracicaba, SP, 13418-900, Brazil
    2. ESALQ/USP, Piracicaba, Brazil
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-2959
文摘
The occurrence and accumulation of heavy metals or so-called potentially toxic elements (PTEs) in soils and plants have driven long-standing concerns about the adverse effects such metals have on the environment and human health. Furthermore, contaminated food products are known to be a leading source of exposure to heavy metals for the general population. It is crucial to accurately assess the concentrations of metals in crops and the bioavailable contents of these elements in the soil. The state of São Paulo is the largest consumer market of horticultural products in Brazil with production focused essentially on urban and industrial areas, which greatly increases the degree of exposure to contaminants. The objective of the authors in this study was to evaluate the soil-plant relationships between concentrations of Cd, Cu, Ni, Pb and Zn in vegetable and garden soils in the state of São Paulo, Brazil. To accomplish this, 200 soil (0–20 cm) and plant samples were collected from 25 species in the production areas. With the exception of Cd, there was positive correlation between pseudototals (USEPA 3051a) and bioavailable contents (extracted with DTPA) of heavy metals. However, the Cd and Pb contents in plants were not significantly correlated with any of the variables studied. All random forest and tree models proved to be good predictors of results generated from a regression model and provided useful information including covariates that were important for specifically forecasting Zn concentration in plants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700