Increased availability of NADH in metabolically engineered baker's yeast improves transaminase-oxidoreductase coupled asymmetric whole-cell bioconversion
详细信息    查看全文
文摘
Background Saccharomyces cerevisiae can be engineered to perform a multitude of different chemical reactions that are not programmed in its original genetic code. It has a large potential to function as whole-cell biocatalyst for one-pot multistep synthesis of various organic molecules, and it may thus serve as a powerful alternative or complement to traditional organic synthetic routes for new chemical entities (NCEs). However, although the selectivity in many cases is high, the catalytic activity is often low which results in low space-time-yields. In the case for NADH-dependent heterologous reductive reactions, a possible constraint is the availability of cytosolic NADH, which may be limited due to competition with native oxidative enzymes that act to maintain redox homeostasis. In this study, the effect of increasing the availability of cytosolic NADH on the catalytic activity of engineered yeast for transamination-reduction coupled asymmetric one-pot conversion was investigated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700