Use of the anti-Prelog stereospecific alcohol dehydrogenase from Leifsonia and Pseudomonas for producing chiral alcohols
详细信息    查看全文
  • 作者:Nobuya Itoh (1)
  • 关键词:Leifsonia sp ; Pseudomonas sp ; Anti ; Prelog alcohol dehydrogenase (ADH) ; Ketone reduction ; Anti ; Prelog chiral alcohol ; Biocatalysis ; Metagenomics
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:98
  • 期:9
  • 页码:3889-3904
  • 全文大小:2,196 KB
  • 参考文献:1. Asako H, Wakita R, Matsumura K, Shimizu M, Sakai J, Itoh N (2005) Purification and cDNA cloning of NADPH-dependent aldoketoreductase, involved in asymmetric reduction of methyl 4-bromo-3-oxobutyrate, from / Penicillium citrinum IFO4631. Appl Environ Microbiol 71:1101鈥?104 CrossRef
    2. Asako H, Shimizu M, Itoh N (2008) Engineering of NADPH-dependent aldo-keto reductase from / Penicillium citrinum by directed evolution to improve thermostability and enantioselectivity. Appl Microbiol Biotechnol 80:805鈥?12 CrossRef
    3. Bahulekar R, Ayyangar NR, Ponrathnam S (1991) Polyethyleneimine in immobilization of biocatalysts. Enzyme Microb Technol 13:858鈥?68 CrossRef
    4. Bradshaw CW, Fu H, Shen GJ, Wong CH (1992b) A / Pseudomonas sp. alcohol dehydrogenase with broad substrate specificity and unusual stereospecificity for organic synthesis. J Org Chem 57:1526鈥?532 CrossRef
    5. Bradshow CW, Hummel W, Wong CH (1992a) / Lactobacillus kefir alcohol dehydrogenase: a useful catalyst for synthesis. J Org Chem 57:1532鈥?536 CrossRef
    6. Ehrensberger AH, Elling RA, Wilson DK (2006) Structure-guided engineering of xylitol dehydrogenase cosubstrate specificity. Structure 14:567鈥?75 CrossRef
    7. Feil IK, Hendle J, Schomburg D (1997) Modified substrate specificity of L-hydroxyisocaproate dehydrogenase derived from structure-based protein engineering. Protein Eng 10:255鈥?62 CrossRef
    8. Hu J, Xu Y (2006) Anti-Prelog reduction of prochiral carbonyl compounds by / Oenococcus oeni in a biphasic system. Biotechnol Lett 28:1115鈥?119 CrossRef
    9. Huisman GW, Liang J, Krebber A (2010) Practical chiral alcohol manufacture using ketoreductases. Curr Opin Chem Biol 14:1鈥? CrossRef
    10. Hummel W (1997) New alcohol dehydrogenases for the synthesis of chiral compounds. Adv Biochem Eng Biotechnol 58:145鈥?84
    11. Hummel W, Kula MR (1989) Dehydrogenases for the synthesis of chiral compounds. Eur J Biochem 184:1鈥?3 CrossRef
    12. Inoue K, Makino Y, Itoh N (2005a) Purification and characterization of a novel alcohol dehydrogenase from / Leifsonia sp. strain S749: a promising biocatalyst for an asymmetric hydrogen transfer bioreduction. Appl Environ Microbiol 71:3633鈥?641 CrossRef
    13. Inoue K, Makino Y, Itoh N (2005b) Production of ( / R)-chiral alcohols by a hydrogen-transfer bioreduction with NADH-dependent / Leifsonia alcohol dehydrogenase (LSADH). Tetrahedron Asymmetry 16:2539鈥?549 CrossRef
    14. Inoue K, Makino Y, Dairi T, Itoh N (2006) Gene cloning and expression of / Leifsonia alcohol dehydrogenase (LSADH) involved in asymmetric hydrogen-transfer bioreduction to produce ( / R)-form chiral alcohols. Biosci Biotechnol Biochem 70:418鈥?26 CrossRef
    15. Isotani K, Kurokawa J, Itoh N (2012) Production of ( / R)-3-quinuclidinol by / E. coli biocatalysts possessing NADH-dependent 3-quinuclidinone reductase (QNR or bacC) from / Microbacterium luteolum and / Leifsonia alcohol dehydrogenase (LSADH). Int J Mol Sci 13:13542鈥?3553 CrossRef
    16. Itoh N, Makino Y (2013) Protein engineering: development of novel enzymes for the improved reduction of C鈥?鈥塐 double bonds. In: Brenna E (ed) Synthetic methods for biologically active molecules. Wiley, Weinheim, pp 139鈥?85 CrossRef
    17. Itoh N, Matsuda M, Mabuchi M, Dairi T, Wang J (2002) Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH. Eur J Biochem 269:2394鈥?402 CrossRef
    18. Itoh N, Nakamura M, Inoue K, Makino Y (2007) Continuous production of chiral 1,3-butanediol using immobilized biocatalysts in a packed bed reactor: promising biocatalysis method with an asymmetric hydrogen-transfer bioreduction. Appl Microbiol Biotechnol 75:1249鈥?256 CrossRef
    19. Itoh N, Isotani K, Nakamura M, Inoue K, Isogai Y, Makino Y (2012) Efficient synthesis of optically pure alcohols by asymmetric hydrogen-transfer biocatalysis: application of engineered enzymes in a 2-propanol-water medium. Appl Microbiol Biotechnol 93:1075鈥?085 CrossRef
    20. Itoh N, Isotani K, Makino Y, Kato M, Kitayama K, Ishimota T (2014) PCR-based amplification and heterologous expression of / Pseudomonas alcohol dehydrogenase genes from the soil metagenome for biocatalysis. Enzyme Microb Technol 50:140鈥?50 CrossRef
    21. Jakoblinnert A, Mladenov R, Paul A, Sibilla F, Schwaneberg U, Ansorge-Schumacher MB, de Dom谋麓nguez MP (2011) Asymmetric reduction of ketones with recombinant / E. coli whole cells in neat substrates. Chem Commun 47:12230鈥?2232 CrossRef
    22. J枚rnvall H, Hedlund J, Bergman T, Oppermann U, Persson B (2010) Superfamilies SDR and MDR: from early ancestry to present forms. Emergence of three lines, a Zn-metalloenzyme, and distinct variabilities. Biochem Biophys Res Commun 396:125鈥?30 CrossRef
    23. Kaluzna IA, Matsuda T, Sewell AK, Stewart JD (2004) Systematic investigation of / Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions. J Am Chem Soc 126:12827鈥?2832 CrossRef
    24. Kaluzna IA, Feske BD, Wittayanan W, Ghiviriga I, Stewart JD (2005) Stereoselective, biocatalytic reductions of 伪-chloro-尾-keto esters. J Org Chem 70:342鈥?45 CrossRef
    25. Kara S, Schrittwieser JH, Hollmann F (2013) Strategies for cofactor regeneration in biocatalyzed reductions. In:Brenna E (ed) Synthetic methods for biologically active molecules. Wiley, Weinheim, pp 209鈥?38 CrossRef
    26. Kita K, Fukura T, Nakase KI, Okamoto K, Yanase H, Kataoka M, Shimizu S (1999a) Cloning, overexpression, and mutagenesis of the / Sporobolomyces salmonicolor AKU4429 gene encoding a new aldehyde reductase, which catalyzes the stereoselective reduction of ethyl 4-chloro-3-oxobutanoate to ethyl ( / S)-4-chloro-3-hydro xybutanoate. Appl Environ Microbiol 65:5207鈥?211
    27. Kita K, Nakase K, Yanase H, Kataoka M, Shimizu S (1999b) Purification and characterization of new aldehyde reductases from / Sporobolomyces salmonicolor AKU4429. J Mol Catal B Enzym 6:305鈥?13 CrossRef
    28. Knietsch A, Waschkowitz T, Bowien S, Henne A, Daniel R (2003a) Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on / Escherichia coli. Appl Environ Microbiol 69:1408鈥?416 CrossRef
    29. Knietsch A, Bowien S, Whited G, Gottschalk G, Daniel R (2003b) Identification and characterization of coenzyme B12-dependent glycerol dehydratase- and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures. Appl Environ Microbiol 69:3048鈥?060 CrossRef
    30. Kroutil W, Mang H, Edegger K, Faber K (2004) Recent advance in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol 8:120鈥?26 CrossRef
    31. Kubota M, Nodate M, Yasumoto-Hirose M, Uchiyama T, Kagami O, Shizuri Y, Misawa N (2005) Isolation and functional analysis of cytochrome P450 CYP153A genes from various environments. Biosci Biotechnol Biochem 69:2421鈥?430 CrossRef
    32. Lamed RJ, Keinan E, Zeikus JG (1981) Potential applications of an alcohol-aldehyde/ketone oxidoreductase from thermophilic bacteria. Enzyme Mircob Technol 3:144鈥?48 CrossRef
    33. Lefevre F, Jarrin C, Ginolhac A, Auriol D, Nalin R (2007) Environmental metagenomics: an innovative resource for industrial biocatalysis. Biocatal Biotrans 25:242鈥?50 CrossRef
    34. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nature 3:510鈥?16
    35. Makino Y, Dairi T, Itoh N (2007) Engineering the phenylacetaldehyde reductase mutant for improved substrate conversion in the presence of concentrated 2-propanol. Appl Microbiol Biotechnol 77:833鈥?43 CrossRef
    36. Mart铆n-Matute B, Edin M, Bog谩r K, Kaynak FB, B盲ckvall JE (2005) Combined ruthenium(II) and lipase catalysis for efficient dynamic kinetic resolution of secondary alcohol: insight into the racemization mechanism. J Am Chem Soc 127:8817鈥?825 CrossRef
    37. Matsuda T, Yamanaka R, Nakamura K (2009) Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron Asymmetry 20:513鈥?57 CrossRef
    38. Matsuyama A, Yamamoto H, Kobayashi Y (2002) Practical application of recombinant whole-cell biocatalysts for the manufacturing of pharmaceutical such as chiral alcohols. Org Process Res Dev 6:558鈥?61 CrossRef
    39. Meng F, Xu Y (2010) Purification and characterization of an anti-Prelog alcohol dehydrogenase from / Oenococcus oeni that reduces 2-octanone to ( / R)-2-octanol. Biotechnol Lett 32:533鈥?37 CrossRef
    40. Moon HJ, Tiwar MK, Singh R, Kang YC, Lee JK (2012) Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase. Appl Environ Microbiol 78:3079鈥?086 CrossRef
    41. Morikawa S, Nakai T, Yasohara Y, Namba H, Kizaki N, Hasegawa J (2005) Highly active mutants of carbonyl reductase S1 with inverted coenzyme specificity and production of optically active alcohols. Biosci Biotechnol Biochem 69:544鈥?52 CrossRef
    42. Nie Y, Xu Y, Mu XQ, Wang HY, Yang M, Xiao R (2007) Purification, characterization, gene cloning, and expression of a novel alcohol dehydrogenase with anti-Prelog stereospecificity from / Candida parapsilosis. Appl Environ Microbiol 73:3759鈥?764 CrossRef
    43. Noyori R (1994) Asymmetric catalysis in organic synthesis. Wiley, New York
    44. Noyori R, Ohkuma T (2001) Asymmetric catalysis by architectural and functional molecular engineering: practical chemo- and stereoselective hydrogenation of ketones. Angew Chem Int Ed 40:40鈥?3 CrossRef
    45. Persson B, Kallberg Y, Bray JE, Bruford E, Dellaporta SL, Favia AD, Duarte RG, J枚rnvall H, Kavanagh KL, Kedishvili N, Kisiela M, Maser E, Mindnich R, Orchard S, Penning TM, Thornton JM, Adamski J, Oppermann U (2009) The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chemico-Biol Interact 178:94鈥?8 CrossRef
    46. Prelog V (1964) Specification of the stereospecificity of some oxidoreductases by diamond lattice sections. Pure Appl Chem 9:119鈥?30 CrossRef
    47. Rocha-Martin J, Vega D, Bolivar JM, Hidalgo A, Berenguer J, Guisan JM, Lopez-Gallego F (2012) Characterization and further stabilization of a new anti-Prelog specific alcohol dehydrogenase from / Thermus thermophilus HB27 for asymmetric reduction of carbonyl compounds. Bioresour Technol 103:343鈥?50 CrossRef
    48. Schlieben NH, Niefind K, M眉ller J, Riebel B, Hummel W, Schomburg D (2005) Atomic resolution structures of / R-specific alcohol dehydrogenase from / Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity. J Mol Biol 349: 801鈥?13
    49. Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389鈥?91 CrossRef
    50. Tanaka N, Nonaka T, Nakanishi M, Deyashiki Y, Hara A, Mitsui Y (1996) Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8聽脜 resolution: the structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family. Structure 4:33鈥?5 CrossRef
    51. Tasn谩di G, Hall M (2013) Relevant practical applications of bioreduction processes in the synthesis of active pharmaceutical ingredients. In: Brenna E (ed) Synthetic methods for biologically active molecules. Wiley, Weinheim, pp 329鈥?74 CrossRef
    52. Toda H, Imae R, Itoh N (2012) Efficient biocatalysis for the production of enantiopure ( / S)-epoxides using styrene monooxygenase (SMO) and / Leifsonia alcohol dehydrogenase (LSADH) system. Tetrahedron Asymmetry 23:1542鈥?549 CrossRef
    53. Uchiyama T, Miyazaki K (2010) Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding gene. Appl Environ Microbiol 76:7029鈥?035 CrossRef
    54. van Hellemond EW, Janssen DB, Fraaije MW (2007) Discovery of a novel styrene monooxygenase originating from the metagenome. Appl Environ Microbiol 73:5832鈥?839 CrossRef
    55. Wada M, Kataoka M, Kawabata H, Yasohara Y, Kizaki N, Hasegawa J, Shimizu S (1998) Purification and characterization of NADPH-dependent carbonyl reductase, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate, from / Candida magnoliae. Biosci Biotechnol Biochem 62:280鈥?85 CrossRef
    56. Wallner SR, Lavandera I, Mayer SF, Ohrlein R, Hafner A, Edegger K, Faber K, Kroutil W (2008) Stereoselective anti-Prelog reduction of ketones by whole cells of / Comamonas testosteroni in a 鈥榮ubstrate-coupled鈥?approach. J Mol Catal B Enzym 55:126鈥?29 CrossRef
    57. Wang Q, Wu H, Wang A, Du P, Pei X, Li H, Yin X, Huang L, Xiong X (2010) Prospecting metagenomic enzyme subfamily genes for DNA family shuffling by a novel PCR-based approach. J Biol Chem 285:41509鈥?1516 CrossRef
    58. Weckbecker A, Hummel W (2006) Cloning, expression, and characterization of an ( / R)-specific alcohol dehydrogenase from / Lactobacillus kefir. Biocatal Biotrans 24:380鈥?89 CrossRef
    59. Weinhold EG, Benner SA (1995) Engineering yeast alcohol dehydrogenase: replacing Trp54 by Leu broadens substrate specificity. Protein Eng Des Sel 8:457鈥?61 CrossRef
    60. Wong CH, Whitesides G (1994) Enzymes in synthetic organic chemistry. Pergamon, Oxford
    61. Yasohara Y, Kizaki N, Hasegawa S, Takahashi S, Wada M, Kataoka M, Shimizu S (2000) Molecular cloning and overexpression of the gene encoding an NADPH-dependent carbonyl reductase from / Candida magnoliae, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate. Biosci Biotechnol Biochem 64:1430鈥?436 CrossRef
    62. Ying X, Ma K (2011) Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic archaeon / Thermococcus guaymasensis. J Bacteriol 193:3009鈥?019 CrossRef
    63. Yun J, Kang S, Park S, Yoon H, Kim MJ, Heu S, Ryu S (2004) Characterization of a novel amylolytic enzyme encoded by a gene from soil-derived metagenomic library. Appl Environ Microbiol 70:7229鈥?235 CrossRef
    64. Zhang R, Zhu G, Zhang W, Cao S, Ou X, Li X, Bartlam M, Xu Y, Zhang XC, Rao Z (2008) Crystal structure of a carbonyl reductase from / Candida parapsilosis with anti-Prelog stereospecificity. Protein Sci 17:1412鈥?423 CrossRef
    65. Zhang R, Geng Y, Xu Y, Zhang W, Wang S, Xiao R (2011) Carbonyl reductase SCRII from / Candida parapsilosis catalyzes anti-Prelog reaction to ( / S)-1-phenyl-1,2-ethanediol with absolute stereochemical selectivity. Bioresour Technol 102:483鈥?89 CrossRef
  • 作者单位:Nobuya Itoh (1)

    1. Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
  • ISSN:1432-0614
文摘
The asymmetric reduction of ketones is one of the most promising processes for producing chiral alcohols. However, dehydrogenases or reductases that can catalyze the reduction of ketones to give anti-Prelog chiral alcohols have been limited to some NADP+/NADPH-dependent enzymes. Recently, we reported a novel NAD+/NADH-dependent alcohol dehydrogenase (ADH) from Leifsonia sp. and Pseudomonas ADH homologs from soil metagenomes. Moreover, we have established an efficient hydrogen-transfer bioreduction process with 2-propanol as a hydrogen donor using Leifsonia ADH. This review focuses on the recent development of novel ADHs for producing industrially useful anti-Prelog chiral alcohols from various ketones.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700