Forward and Inverse Bio-Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments
详细信息    查看全文
  • 作者:T. H. Barkouki (1)
    B. C. Martinez (1)
    B. M. Mortensen (1)
    T. S. Weathers (1)
    J. D. De Jong (1)
    T. R. Ginn (1) trginn@ucdavis.edu
    N. F. Spycher (2)
    R. W. Smith (3)
    Y. Fujita (4)
  • 关键词:Calcite precipitation – ; Urea hydrolysis – ; Ureolysis – ; Strontium remediation – ; Soil improvement – ; Inverse – ; Biogeochemistry – ; Biogeochemical – ; Biogrout – ; Biocementation ; Bioremediation – ; Reactivetransport
  • 刊名:Transport in Porous Media
  • 出版年:2011
  • 出版时间:October 2011
  • 年:2011
  • 卷:90
  • 期:1
  • 页码:23-39
  • 全文大小:818.4 KB
  • 参考文献:1. Barkouki T.H.: Microbially-induced calcite precipitation for in situ radionuclide remediation and soil stablization: inverse and forward reactive transport modeling. Masters Thesis, University of California, Davis (2010). http://gradworks.umi.com/14/86/1486868.html. Accessed 17 Aug 2010
    2. Booster, J.L., van Meurs, G.A.M., Pruiksma, J.P., van Paassen, L.A., Harkes, M., Whiffin, V.: 1D-modelling of microbially induced calcite precipitation for geotechnical applications. In: 1st International Conference on Bio-Geo-Civil Engineering, pp. 45–50. 23–25 June 2008
    3. De Jong J.T., Fritzges M.B., N眉sslein K.: Microbially induced cementation to control sand response to undrained shear. ASCE J. Geotechn. Geoenviron. Eng. 132(11), 1381–1392 (2006)
    4. De Jong J.T, Mortensen B.M., Martinez B.M., Nelson D.C.: Bio-mediated soil improvement. Ecol. Eng. 36, 197–210 (2010)
    5. Dupraz S., Parmentier M., M茅nez B., Guyot F.: Experimental and numerical modeling of bacterially induced pH increase and calcite precipitation in saline aquifers. Chem. Geol. 265(1–2), 44–53 (2009)
    6. Ferris F.G., Stehmeier L.G., Kantzas A., Mourits F.M.: Bacteriogenic mineral plugging. J. Can. Pet. Technol. 35(8), 56–61 (1996)
    7. Ferris F.G., Phoenix V., Fujita Y., Smith R.W.: Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20掳C in artificial groundwater. Geochim. Cosmochim. Acta 68(8), 1701–1710 (2004)
    8. Fidaleo M., Lavecchia R.: Kinetic Study of Enzymatic Urea Hydrolysis in the pH Range 4–9. Chem. Biochem. Eng. 17(4), 311–318 (2003)
    9. Fujita Y., Ferris F.G., Lawson R.D., Colwell F.S., Smith R.W.: Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol. J. 17, 305–318 (2000)
    10. Fujita Y., Redden G.D., Ingram J.S., Cortez M.M., Smith R.W.: Strontium incorporation into calcite generated by bacterial ureolysis. Geochim. Cosmochim. Acta 68(15), 3261–3270 (2004)
    11. Fujita Y., Taylor J.L., Gresham T.T., Delwiche M., Colwell F., McLing T.L., Petzke L.M., Smith R.W.: Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation. Environ. Sci. Technol. 42, 3025–30320 (2008)
    12. Ginn T.R., Wood B.D., Nelson K., Scheibe T.D., Murphy E.M., Clement T.P.: Processes in microbial transport in the natural subsurface. Adv Water Res 25(8–12), 1017–1042 (2002)
    13. Hammes F., Boon N., Clement G., de Villiers J., Siciliano S.D., Verstraete W.: Molecular biochemical and ecological characterization of bio-catalytic calcification reactor. Appl. Microbiol. Biotechnol. 62, 191–201 (2003)
    14. Harkes M.P., van Paassen L.A., Booster J.L., Whiffin V.S., van Loosdrecht M.C.M.: Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol. Eng. 36, 112–117 (2010)
    15. Hill M.C., Tiedeman C.R.: Effective Groundwater Model Calibration: With Analysis of Data Sensitivities Predictions and Uncertainty. Wiley-Interscience, New York (2007)
    16. Ip Y.K., Chew S.F., Randall D.J.: Ammonia toxicity tolerance and excretion. Fish Physiol. 20, 109–148 (2001)
    17. Ivanov V., Chu J.: Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in-situ. Rev. Environ. Sci. Biotechnol. 7(2), 139–153 (2008)
    18. Iwamoto T., Nasu M.: Current bioremediation practice and perspective. J. Biosci. Bioeng. 92(1), 1–8 (2001)
    19. Karol R.H.: Chemical Grouting and Soil Stabilization. Marcel Dekker, New York (2003)
    20. Lee J., Santamarina J.C.: Bender elements: performance and signal interpretation. J. Geotechn. Geoenviron. Eng. ASCE 131(9), 1063–1070 (2004)
    21. Mansell B.O., De Vellis L., Schroeder E.D.: Automated separation and conductimetric determination of inorganic nitrogen. J. Environ. Eng. 126(8), 778–780 (2000)
    22. Mitchell A.C., Ferris F.G.: The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetic dependence. Geochim. Cosmochim. Acta 69(17), 4199–4210 (2005)
    23. Mitchell A.C., Ferris F.G.: Effect of strontium contaminants upon the size and solubility of calcite crystals precipitated by the bacterial hydrolysis of urea. Environ. Sci. Technol. 40, 1008–1014 (2006a)
    24. Mitchell A.C., Ferris F.G.: The influence of Bacillus pasteurii on the nucleation and growth of calcium carbonte. Geomicrobiol. J. 23(3), 213–226 (2006b)
    25. Morel F.M.M., Hering J.G.: Principles and Applications of Aquatic Chemistry. Wiley-Interscience, New York (1993)
    26. Mortensen, B.M., De Jong, J.T., Martinez, B.C., Weil, M., Waller, J., Gerhard, R., Perderson, L.: Fabrication operation and health monitoring of bender elements for aggressive environments. ASTM Geotechn. Test. J. (2010) (in review)
    27. Sternbeck J., Sternbeck J.: A mechanistic model for calcite crystal growth using surface speciation. Geochim. Cosmochim. Acta 63(2), 217–225 (1999)
    28. Parkhurst, D.L., Thorstenson, D.C., Plummer, L.N.: PHREEQE : a computer program for geochemical calculations. US Geol. Surv. Water-Resour. Investig. Report Number 80–96 (1980)
    29. Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol. Surv. Water-Resour. Investig. Report 99-4259, 310 (1999)
    30. Poeter, E.P., Hill, M.C., Banta, E.R., Mehl, S., Christensen, S.: UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation, techniques and methods 6-a11, US Geol. Surv. (2005)
    31. Ramachandran, S.K., Ramakrishnan, V., Bang, S.S.: Remediation of concrete using micro-organisms. ACI Mater. J. 98-M1:3–9 (2001)
    32. Ramakrishnan, V., Bang, S.S., Deo, K.S.: A novel technique for repairing cracks in high performance concrete structures using bacteria. In: International Conference on HPHSC, Perth, pp. 597–617 (1998)
    33. Ramakrishnan, V., Ramesh, K.P., Bang, S.S.: Bacterial concrete. Proc SPIE. 4234, 168–176 (2001)
    34. Reed M.H.: Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals gases and an aqueous phase. Geochim. Cosmochim. Acta 46, 513–528 (1982)
    35. Suer P., Hallberg N., Carlsson C., Bendz D., Holm G.: Biogrouting compared to jet grouting: environmental (LCA) and economical assessment. J. Environ. Sci. Health A 44(4), 346–353 (2009). doi:
    36. van Paassen, L.A., Isimite, J.O., Picioreanu, C., van Loosdrecht, M.C.M.: Computational model to study microbial carbonate precipitation in porous media at micro-scale. In: 1st International Conference on Bio-Geo-Civil Engineering, pp. 45–50, June 23–25 (2008)
    37. van Tittelboom K., de Belie N., de Muynck W., Verstraete W.: Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40(1), 157–166 (2010)
    38. Whiffin V.S., van Paassen L.A., Harkes M.P.: Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 24, 417–423 (2007)
    39. Xu T., Sonnenthal E.L., Spycher N., Pruess K.: TOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput. Geosci. 32(2), 145–165 (2006)
    40. Xu T.: Incorporation of aqueous reaction kinetics and biodegradation into TOUGHREACT: application of a multi-region model to hydrobiogeochemical transport of denitrification and sulfate reduction. Vad. Z. J. 7(1), 305–315 (2008)
    41. Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.: Toughreact Users’ Guide: A Simulation Program for Non-Isothermal Multiphase Reachtive Geochemical Transport in Variably Saturated Geologic Media. LBNL Report 55460-2008. Lawrence Berkeley National Laboratory, Berkeley (2008)
  • 作者单位:1. Department of Civil and Environmental Engineering, University of California, Davis, USA2. Division of Earth Sciences, Lawrence Berkeley National Laboratory, Berkeley, USA3. Department of Biological and Agricultural Engineering, University of Idaho, Idaho Falls, USA4. Department of Biological Sciences, Idaho National Laboratory, Idaho Falls, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Industrial Chemistry and Chemical Engineering
    Civil Engineering
    Hydrogeology
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Netherlands
  • ISSN:1573-1634
文摘
Microbially induced calcite precipitation (MICP) offers an alternative solution to a wide range of civil engineering problems. Laboratory tests have shown that MICP can immobilize trace metals and radionuclides through co-precipitation with calcium carbonate. MICP has also been shown to improve the undrained shear response of soils and offers potential benefits over current ground improvement techniques that may pose environmental risks and suffer from low “certainty of execution.” Our objective is to identify an effective means of achieving uniform distribution of precipitate in a one-dimensional porous medium. Our approach involves column experiments and numerical modeling of MICP in both forward and inverse senses, using a simplified reaction network, with the bacterial strain Sporoscarcina pasteurii. It was found that the stop-flow injection of a urea- and calcium-rich solution produces a more uniform calcite distribution as compared to a continuous injection method, even when both methods involve flow in opposite direction to that used for bacterial cell emplacement. Inverse modeling was conducted by coupling the reactive transport code TOUGHREACT to UCODE for estimating chemical reaction rate parameters with a good match to the experimental data. It was found, however, that the choice of parameters and data was not sufficient to determine a unique solution, and our findings suggest that additional time and space-varying analytical data of aqueous species would improve the accuracy of numerical modeling of MICP.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700