Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture
详细信息    查看全文
  • 作者:Liang Cheng ; Ralf Cord-Ruwisch
  • 关键词:Chemostat ; Urease ; Non ; sterile ; Activated sludge ; Biocementation ; Soil stabilization
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:40
  • 期:10
  • 页码:1095-1104
  • 全文大小:508KB
  • 参考文献:1. Achal V, Mukherjee A, Reddy MS (2010) Biocalcification by / Sporosarcina pasteurii using corn steep liquor as the nutrient source. Ind Biot 6:170-74 CrossRef
    2. Al-Thawadi SM (2008) High strength in situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria. Ph.D. thesis, Murdoch University, Perth
    3. Al-Thawadi SM, Cord-Ruwisch R (2012) Calcium carbonate crystals formation by ureolytic bacteria isolated from Australian soil and sludge. J Adv Sci Eng Res 2:13-6
    4. Al-Thawadi SM, Cord-Ruwisch R, Bououdina M (2012) Consolidation of sand particles by nanoparticles of calcite after concentrating ureolytic bacteria in situ. Int J Green Nanotechnol 4:28-6 CrossRef
    5. Blakeley RL, Zerner B (1984) Jack bean urease: the first nickel enzyme. J Mol Catal 23:263-92 CrossRef
    6. Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359-78
    7. Bremner JM, Krogeier MJ (1988) Elimination of the adverse effects of urea fertilizer on seed germination, seedling growth, and early plant growth. Proc Natl Acad Sci USA 85:4601-604 CrossRef
    8. Chaplin M, Bucke C (1990) Enzyme technology. Cambridge University Press, Cambridge
    9. Cheng L, Cord-Ruwisch R (2012) In situ soil cementation with ureolytic bacteria by surface percolation. Ecol Eng 42:64-2 CrossRef
    10. Cheng L, Cord-Ruwisch R, Shahin MA (2013) Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can Geotech J 50:1-0 CrossRef
    11. Collins CM, D’Orazio SEF (1993) Bacterial ureases: structure, regulation of expression and role in pathogenesis. Mol Microbiol 9:907-13 CrossRef
    12. De Muynck W, Debrouwer D, De Belie N, Verstraete W (2008) Bacterial carbonate precipitation improves the durability of cementitious materials. Cement Concrete Res 38:1005-014 CrossRef
    13. DeJong JT, Fritzges MB, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. ASCE J Geotech Geoenviron Eng 132:1381-392 CrossRef
    14. Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW (2000) Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol J 17:305-18 CrossRef
    15. Hansen LM, Solnik JV (2001) Selection for urease activity during / Helicobacter pylori infection of Rhesus Macaques ( / Macaca mulatta). Infect Immun 69:3519-522 CrossRef
    16. Hausinger RP (1987) Nickel utilization by microorganisms. Microbiol Rev 51:22-2
    17. Hess DC, Lu W, Rabinowitz JD, Botstein D (2006) Ammonium toxicity and potassium limitation in yeast. PLoS Biol 4:2012-023 CrossRef
    18. Jahns T (1996) Ammonium/urea-dependent generation of a proton electrochemical potential and synthesis of ATP in / Bacillus pasteurii. J Bacteriol 178:403-09
    19. Johnson K, Jiang Y, Kleerebezem R, Muyzer G, van Loosdrecht MCM (2009) Enrichment of a mixed bacterial culture with a high polyhydroxylalkanoate storage capacity. Biomacromolecules 10:670-76 CrossRef
    20. Kucharski ES, Cord-Ruwisch R, Whiffin VS, Al-Thawadi SMJ (2006) Microbial biocementation. World Patent WO/2006/066326
    21. Le Metayer-Levrel G, Castanier S, Orial G, Loubiere JF, Perthuisot JP (1999) Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment Geol 126:25-4 CrossRef
    22. Lee SG, Calhoun DH (1997) Urease from a potentially pathogenic coccoid isolate: purification, characterization, and comparison to other microbial ureases. Infect Immun 65:3991-996
    23. Lever M, Ho G, Cord-Ruwisch R (2010) Ethanol from lignocellulose using crude unprocessed cellulose from solid-state fermentation. Bioresource Technol 101:7083-087 CrossRef
    24. Madigan MT, Martinko JM, Parker J (2000) Brock biology of microorganisms, 9th edn. Prentice-Hall, New Jersey
    25. McSwain BS, Irvine RL, Hausner M, Wilderer PA (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71:1051-057 CrossRef
    26. Mobley HLT, Hausinger RP (1989) Microbial ureases: significance, regulation and molecular characterisation. Microbiol Rev 53:85-08
    27. Mobley HLT, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59:451-80
    28. M?rsdorf G, Kaltwasser H (1989) Ammonium Assimilation in / Proteus vulgaris, / Bacillus pasteurii, and / Sporosarcina ureae. Arch Microbiol 152:125-31 CrossRef
    29. Müller T, Walter B, Wirtz A, Burkovski A (2006) Ammonium toxicity in bacteria. Curr Microbiol 52:400-06 CrossRef
    30. Neyrolles O, Ferris S, Behbahani N, Montagnier L, Blanchard A (1996) Organization of / Ureaplasma urealyticum urease gene cluster and expression in a suppressor strain of / Escherichia coli. J Bacteriol 178:647-55
    31. Padan E, Zilberstein D, Rottenberg H (1976) The proton electrochemical gradient in / Escherichia coli cells. Eur J Biochem 63:533-41 CrossRef
    32. Prescott LM, Harley JP, Klein DA (1993) Microbiology, 2nd edn. Brown, Dubuque
    33. Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using microorganisms. ACI Mater J 98:3-
    34. Rosentein I, Hamilton-Miller JMT, Brumfitt W (1981) Role of urease in the formation of infection stones: comparison of ureases from different sources. Infect Immun 32:32-7
    35. Sheng G, Yu H, Yu Z (2005) Extraction of extracellular polymeric substances from the photosynthetic bacterium / Rhodopseudomonas acidophila. Appl Microbiol Biotechnol 67:125-30 CrossRef
    36. Shilo M (1962) The mechanism of lysis of / Prymnesium parvum by weak electrolytes. J Gen Microbiol 29:645-58 CrossRef
    37. Van der Star WRL, van Wijngaarden-van Rossum WK, van Paassen LA, van Baalen LR, van Zwieten G (2011) Stabilization of gravel deposits using microorganisms. In: Anagnostopoulos A, Pachakis M, Tsatsanifos C (eds) Geotechnics of hard soils—weak rocks. Proceedings of the 15th European conference of on soil mechanics and geotechnical engineering. Athens, pp 85-0
    38. Van Loosdrecht MCM, Kleerebezem R (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207-12 CrossRef
    39. Van Paassen LA (2011) Bio-mediated ground improvement: from laboratory experiment to pilot applications. ASCE GeoFrontiers 2011: advances in geotechnical engineering. Geotech Spec Publ 2011:4099-108
    40. Van Paassen LA, Ghose R, Van der Linden TJM, van der Star WRL, van Loosdrecht MCM (2010) Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. J Geotech Geoenviron Eng 136:1721-728 CrossRef
    41. Van Paassen LA, Harkes MP, van Zwieten GA, van der Zon WH, van der Star WRL, van Loosdrecht MCM (2009) Scale up of biogrout: a biological ground reinforcement method. In: Hamza M, Shahien M, EI-Mossallamy Y (eds) Proceedings of the 17th international conference on soil mechanics and geotechnical engineering, The Academia and Practice of Geotechnical Engineering, Egypt, pp 2328-333
    42. Varenyam A, Mukherjee A, Reddy MS (2010) Characterization of two urease-producing and calcifying / Bacillus spp. isolated from cement. J Microbial Biotechnol 20:1571-576 CrossRef
    43. Weber M, Jones MJ, Ulrich J (2008) Crystallization as a purification method for jack bean urease: on the suitability of poly(ethylene glycol), Li2SO4, and NaCl as precipitants. Cryst Growth Des 8:711-16 CrossRef
    44. Whiffin VS (2004) Microbial CaCO3 precipitation for the production of biocement. Ph.D. thesis, Murdoch University, Perth
    45. Whiffin VS, Van Paassen LA, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24:417-23 CrossRef
    46. Young GM, Amid D, Miller VL (1996) A biofunctional urease enhances survival of pathogenic / Yersinia enterocolitica and / Morganella morganii at low pH. J Bacteriol 178:6487-495
  • 作者单位:Liang Cheng (1)
    Ralf Cord-Ruwisch (1)

    1. School of Biological Sciences and Biotechnology, Murdoch University, 90 South Street, Perth, WA, 6150, Australia
  • ISSN:1476-5535
文摘
In general, bioprocesses can be subdivided into naturally occurring processes, not requiring sterility (e.g., beer brewing, wine making, lactic acid fermentation, or biogas digestion) and other processes (e.g., the production of enzymes and antibiotics) that typically require a high level of sterility to avoid contaminant microbes overgrowing the production strain. The current paper describes the sustainable, non-sterile production of an industrial enzyme using activated sludge as inoculum. By using selective conditions (high pH, high ammonia concentration, and presence of urea) for the target bacterium, highly active ureolytic bacteria, physiologically resembling Sporosarcina pasteurii were reproducibly enriched and then continuously produced via chemostat operation of the bioreactor. When using a pH of 10 and about 0.2?M urea in a yeast extract-based medium, ureolytic bacteria developed under aerobic chemostat operation at hydraulic retention times of about 10?h with urease levels of about 60?μmol?min??ml? culture. For cost minimization at an industrial scale the costly protein-rich yeast extract medium could be replaced by commercial milk powder or by lysed activated sludge. Glutamate, molasses, or glucose-based media did not result in the enrichment of ureolytic bacteria by the chemostat. The concentration of intracellular urease was sufficiently high such that the produced raw effluent from the reactor could be used directly for biocementation in the field.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700