DTX3L and ARTD9 inhibit IRF1 expression and mediate in cooperation with ARTD8 survival and proliferation of metastatic prostate cancer cells
详细信息    查看全文
  • 作者:Samia B Bachmann (1)
    Sandra C Frommel (1) (2)
    Rosalba Camicia (1) (3)
    Hans C Winkler (1) (4)
    Raffaella Santoro (1)
    Paul O Hassa (1)

    1. Institute of Veterinary Biochemistry and Molecular Biology
    ; University of Zurich ; Winterthurerstrasse 190 ; 8057 ; Zurich ; Switzerland
    2. Molecular Life Science Program
    ; Life Science Zurich Graduate School ; University of Zurich ; Winterthurerstrasse 190 ; 8057 ; Zurich ; Switzerland
    3. Stem Cell Research Laboratory
    ; NHS Blood and Transplant ; Nuffield Division of Clinical Laboratory Sciences ; Radcliffe Department of Medicine ; University of Oxford ; Oxford ; OX3 9DU ; UK
    4. Institute of Pharmacology and Toxicology
    ; Vetsuisse Faculty ; University of Zurich ; Winterthurerstrasse 260 ; 8057 ; Zurich ; Switzerland
  • 关键词:Metastatic prostate cancer ; Mono ; ADP ; ribosyltransferase ; ARTD9/PARP9 ; ARTD8/PARP14 ; E3 ubiquitin ligase ; DTX3L/BBAP ; Proliferation ; Survival ; Migration ; STAT1 ; STAT3
  • 刊名:Molecular Cancer
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:3,662 KB
  • 参考文献:1. Shen, MM, Abate-Shen, C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24: pp. 1967-2000 CrossRef
    2. Wegiel, B, Evans, S, Hellsten, R, Otterbein, LE, Bjartell, A, Persson, JL (2010) Molecular pathways in the progression of hormone-independent and metastatic prostate cancer. Curr Cancer Drug Targets 10: pp. 392-401 CrossRef
    3. Berger, MF, Lawrence, MS, Demichelis, F, Drier, Y, Cibulskis, K, Sivachenko, AY, Sboner, A, Esgueva, R, Pflueger, D, Sougnez, C, Onofrio, R, Carter, SL, Park, K, Habegger, L, Ambrogio, L, Fennell, T, Parkin, M, Saksena, G, Voet, D, Ramos, AH, Pugh, TJ, Wilkinson, J, Fisher, S, Winckler, W, Mahan, S, Ardlie, K, Baldwin, J, Simons, JW, Kitabayashi, N, MacDonald, TY (2011) The genomic complexity of primary human prostate cancer. Nature 470: pp. 214-220 CrossRef
    4. Cheng, L, Montironi, R, Bostwick, DG, Lopez-Beltran, A, Berney, DM (2012) Staging of prostate cancer. Histopathology 60: pp. 87-117 CrossRef
    5. Rubin, MA, Maher, CA, Chinnaiyan, AM (2011) Common gene rearrangements in prostate cancer. J Clin Oncol 29: pp. 3659-3668 CrossRef
    6. Ahonen, TJ, Xie, J, LeBaron, MJ, Zhu, J, Nurmi, M, Alanen, K, Rui, H, Nevalainen, MT (2003) Inhibition of transcription factor Stat5 induces cell death of human prostate cancer cells. J Biol Chem 278: pp. 27287-27292 CrossRef
    7. Abdulghani, J, Gu, L, Dagvadorj, A, Lutz, J, Leiby, B, Bonuccelli, G, Lisanti, MP, Zellweger, T, Alanen, K, Mirtti, T, Visakorpi, T, Bubendorf, L, Nevalainen, MT (2008) Stat3 promotes metastatic progression of prostate cancer. Am J Pathol 172: pp. 1717-1728 CrossRef
    8. Battle, TE, Frank, DA (2002) The role of STATs in apoptosis. Curr Mol Med 2: pp. 381-392 CrossRef
    9. Gritsko, T, Williams, A, Turkson, J, Kaneko, S, Bowman, T, Huang, M, Nam, S, Eweis, I, Diaz, N, Sullivan, D, Yoder, S, Enkemann, S, Eschrich, S, Lee, JH, Beam, CA, Cheng, J, Minton, S, Muro-Cacho, CA, Jove, R (2006) Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res 12: pp. 11-19 CrossRef
    10. Yu, H, Jove, R (2004) The STATs of cancer鈥搉ew molecular targets come of age. Nat Rev Cancer 4: pp. 97-105 CrossRef
    11. Khodarev, NN, Minn, AJ, Efimova, EV, Darga, TE, Labay, E, Beckett, M, Mauceri, HJ, Roizman, B, Weichselbaum, RR (2007) Signal transducer and activator of transcription 1 regulates both cytotoxic and prosurvival functions in tumor cells. Cancer Res 67: pp. 9214-9220 CrossRef
    12. Khodarev, NN, Roizman, B, Weichselbaum, RR (2012) Molecular pathways: interferon/stat1 pathway: role in the tumor resistance to genotoxic stress and aggressive growth. Clin Cancer Res 18: pp. 3015-3021 CrossRef
    13. Tsai, MH, Cook, JA, Chandramouli, GV, DeGraff, W, Yan, H, Zhao, S, Coleman, CN, Mitchell, JB, Chuang, EY (2007) Gene expression profiling of breast, prostate, and glioma cells following single versus fractionated doses of radiation. Cancer Res 67: pp. 3845-3852 CrossRef
    14. Weichselbaum, RR, Ishwaran, H, Yoon, T, Nuyten, DS, Baker, SW, Khodarev, N, Su, AW, Shaikh, AY, Roach, P, Kreike, B, Roizman, B, Bergh, J, Pawitan, Y, van de Vijver, MJ, Minn, AJ (2008) An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc Natl Acad Sci U S A 105: pp. 18490-18495 CrossRef
    15. Patterson, SG, Wei, S, Chen, X, Sallman, DA, Gilvary, DL, Zhong, B, Pow-Sang, J, Yeatman, T, Djeu, JY (2006) Novel role of Stat1 in the development of docetaxel resistance in prostate tumor cells. Oncogene 25: pp. 6113-6122 CrossRef
    16. Pitroda, SP, Wakim, BT, Sood, RF, Beveridge, MG, Beckett, MA, MacDermed, DM, Weichselbaum, RR, Khodarev, NN (2009) STAT1-dependent expression of energy metabolic pathways links tumour growth and radioresistance to the Warburg effect. BMC Med 7: pp. 68 CrossRef
    17. Cochet, O, Frelin, C, Peyron, JF, Imbert, V (2006) Constitutive activation of STAT proteins in the HDLM-2 and L540 Hodgkin lymphoma-derived cell lines supports cell survival. Cell Signal 18: pp. 449-455 CrossRef
    18. El-Hashemite, N, Zhang, H, Walker, V, Hoffmeister, KM, Kwiatkowski, DJ (2004) Perturbed IFN-gamma-Jak-signal transducers and activators of transcription signaling in tuberous sclerosis mouse models: synergistic effects of rapamycin-IFN-gamma treatment. Cancer Res 64: pp. 3436-3443 CrossRef
    19. Legrand, A, Vadrot, N, Lardeux, B, Bringuier, AF, Guillot, R, Feldmann, G (2004) Study of the effects of interferon a on several human hepatoma cell lines: analysis of the signalling pathway of the cytokine and of its effects on apoptosis and cell proliferation. Liver Int 24: pp. 149-160 CrossRef
    20. Greenwood, C, Metodieva, G, Al-Janabi, K, Lausen, B, Alldridge, L, Leng, L, Bucala, R, Fernandez, N, Metodiev, MV (2012) Stat1 and CD74 overexpression is co-dependent and linked to increased invasion and lymph node metastasis in triple-negative breast cancer. J Proteomics 75: pp. 3031-3040 CrossRef
    21. Sun, Y, Cheng, MK, Griffiths, TR, Mellon, JK, Kai, B, Kriajevska, M, Manson, MM (2013) Inhibition of STAT signalling in bladder cancer by diindolylmethane: relevance to cell adhesion, migration and proliferation. Curr Cancer Drug Targets 13: pp. 57-68 CrossRef
    22. Magkou, C, Giannopoulou, I, Theohari, I, Fytou, A, Rafailidis, P, Nomikos, A, Papadimitriou, C, Nakopoulou, L (2012) Prognostic significance of phosphorylated STAT-1 expression in premenopausal and postmenopausal patients with invasive breast cancer. Histopathology 60: pp. 1125-1132 CrossRef
    23. Camicia, R, Bachmann, SB, Winkler, HC, Beer, M, Tinguely, M, Haralambieva, E, Hassa, PO (2013) BAL1/ARTD9 represses the anti-proliferative and pro-apoptotic IFNgamma-STAT1-IRF1-p53 axis in diffuse large B-cell lymphoma. J Cell Sci 126: pp. 1969-1980 CrossRef
    24. Stephanou, A, Latchman, DS (2003) STAT-1: a novel regulator of apoptosis. Int J Exp Pathol 84: pp. 239-244 CrossRef
    25. Townsend, PA, Scarabelli, TM, Davidson, SM, Knight, RA, Latchman, DS, Stephanou, A (2004) STAT-1 interacts with p53 to enhance DNA damage-induced apoptosis. J Biol Chem 279: pp. 5811-5820 CrossRef
    26. Taniguchi, T, Ogasawara, K, Takaoka, A, Tanaka, N (2001) IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19: pp. 623-655 CrossRef
    27. Romeo, G, Fiorucci, G, Chiantore, MV, Percario, ZA, Vannucchi, S, Affabris, E (2002) IRF-1 as a negative regulator of cell proliferation. J Interferon Cytokine Res 22: pp. 39-47 CrossRef
    28. Dunn, GP, Koebel, CM, Schreiber, RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6: pp. 836-848 CrossRef
    29. Meyer, T, Hendry, L, Begitt, A, John, S, Vinkemeier, U (2004) A single residue modulates tyrosine dephosphorylation, oligomerization, and nuclear accumulation of stat transcription factors. J Biol Chem 279: pp. 18998-19007 CrossRef
    30. Meyer, T, Vinkemeier, U (2004) Nucleocytoplasmic shuttling of STAT transcription factors. Eur J Biochem 271: pp. 4606-4612 CrossRef
    31. Lodige, I, Marg, A, Wiesner, B, Malecova, B, Oelgeschlager, T, Vinkemeier, U (2005) Nuclear export determines the cytokine sensitivity of STAT transcription factors. J Biol Chem 280: pp. 43087-43099 CrossRef
    32. Khodarev, NN, Roach, P, Pitroda, SP, Golden, DW, Bhayani, M, Shao, MY, Darga, TE, Beveridge, MG, Sood, RF, Sutton, HG, Beckett, MA, Mauceri, HJ, Posner, MC, Weichselbaum, RR (2009) STAT1 pathway mediates amplification of metastatic potential and resistance to therapy. PLoS One 4: pp. e5821 CrossRef
    33. Huisman, MT, Chhatta, AA, van Tellingen, O, Beijnen, JH, Schinkel, AH (2005) MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int J Cancer 116: pp. 824-829 CrossRef
    34. van Brussel, JP, van Steenbrugge, GJ, Romijn, JC, Schroder, FH, Mickisch, GH (1999) Chemosensitivity of prostate cancer cell lines and expression of multidrug resistance-related proteins. Eur J Cancer 35: pp. 664-671 CrossRef
    35. Zalcberg, J, Hu, XF, Slater, A, Parisot, J, El-Osta, S, Kantharidis, P, Chou, ST, Parkin, JD (2000) MRP1 not MDR1 gene expression is the predominant mechanism of acquired multidrug resistance in two prostate carcinoma cell lines. Prostate Cancer Prostatic Dis 3: pp. 66-75 CrossRef
    36. Zhong, B, Sallman, DA, Gilvary, DL, Pernazza, D, Sahakian, E, Fritz, D, Cheng, JQ, Trougakos, I, Wei, S, Djeu, JY (2010) Induction of clusterin by AKT鈥搑ole in cytoprotection against docetaxel in prostate tumor cells. Mol Cancer Ther 9: pp. 1831-1841 CrossRef
    37. Hatano, K, Yamaguchi, S, Nimura, K, Murakami, K, Nagahara, A, Fujita, K, Uemura, M, Nakai, Y, Tsuchiya, M, Nakayama, M, Nonomura, N, Kaneda, Y (2013) Residual Prostate Cancer Cells after Docetaxel Therapy Increase the Tumorigenic Potential via Constitutive Signaling of CXCR4, ERK1/2 and c-Myc. Mol Cancer Res 11: pp. 1088-1100 CrossRef
    38. Hottiger, MO, Hassa, PO, Luscher, B, Schuler, H, Koch-Nolte, F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35: pp. 208-219 CrossRef
    39. Cho, SH, Goenka, S, Henttinen, T, Gudapati, P, Reinikainen, A, Eischen, CM, Lahesmaa, R, Boothby, M (2009) PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells. Blood 113: pp. 2416-2425 CrossRef
    40. Goenka, S, Boothby, M (2006) Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor. Proc Natl Acad Sci U S A 103: pp. 4210-4215 CrossRef
    41. Goenka, S, Cho, SH, Boothby, M (2007) Collaborator of Stat6 (CoaSt6)-associated poly(ADP-ribose) polymerase activity modulates Stat6-dependent gene transcription. J Biol Chem 282: pp. 18732-18739 CrossRef
    42. Timinszky, G, Till, S, Hassa, PO, Hothorn, M, Kustatscher, G, Nijmeijer, B, Colombelli, J, Altmeyer, M, Stelzer, EH, Scheffzek, K, Hottiger, MO, Ladurner, AG (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16: pp. 923-929 CrossRef
    43. Moyle, PM, Muir, TW (2010) Method for the synthesis of mono-ADP-ribose conjugated peptides. J Am Chem Soc 132: pp. 15878-15880 CrossRef
    44. Forst, AH, Karlberg, T, Herzog, N, Thorsell, AG, Gross, A, Feijs, KL, Verheugd, P, Kursula, P, Nijmeijer, B, Kremmer, E, Kleine, H, Ladurner, AG, Schuler, H, Luscher, B (2013) Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. Structure 21: pp. 462-475 CrossRef
    45. Cho, SH, Ahn, AK, Bhargava, P, Lee, CH, Eischen, CM, McGuinness, O, Boothby, M (2011) Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family. Proc Natl Acad Sci U S A 108: pp. 15972-15977 CrossRef
    46. Barbarulo, A, Iansante, V, Chaidos, A, Naresh, K, Rahemtulla, A, Franzoso, G, Karadimitris, A, Haskard, DO, Papa, S, Bubici, C (2012) Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma. Oncogene 32: pp. 4231-4242 CrossRef
    47. Takeyama, K, Aguiar, RC, Gu, L, He, C, Freeman, GJ, Kutok, JL, Aster, JC, Shipp, MA (2003) The BAL-binding protein BBAP and related Deltex family members exhibit ubiquitin-protein isopeptide ligase activity. J Biol Chem 278: pp. 21930-21937 CrossRef
    48. Juszczynski, P, Kutok, JL, Li, C, Mitra, J, Aguiar, RC, Shipp, MA (2006) BAL1 and BBAP are regulated by a gamma interferon-responsive bidirectional promoter and are overexpressed in diffuse large B-cell lymphomas with a prominent inflammatory infiltrate. Mol Cell Biol 26: pp. 5348-5359 CrossRef
    49. Obiero, J, Walker, JR, Dhe-Paganon, S (2012) Fold of the conserved DTC domain in Deltex proteins. Proteins 80: pp. 1495-1499 CrossRef
    50. Grunewald, TG, Diebold, I, Esposito, I, Plehm, S, Hauer, K, Thiel, U, da Silva-Buttkus, P, Neff, F, Unland, R, Muller-Tidow, C, Zobywalski, C, Lohrig, K, Lewandrowski, U, Sickmann, A (2012) Prazeres da Costa O, Gorlach A, Cossarizza A, Butt E, Richter GH, Burdach S: STEAP1 is associated with the invasive and oxidative stress phenotype of Ewing tumors. Mol Cancer Res 10: pp. 52-65 CrossRef
    51. Wilting, SM, de Wilde, J, Meijer, CJ, Berkhof, J, Yi, Y, van Wieringen, WN, Braakhuis, BJ, Meijer, GA, Ylstra, B, Snijders, PJ, Steenbergen, RD (2008) Integrated genomic and transcriptional profiling identifies chromosomal loci with altered gene expression in cervical cancer. Genes Chromosomes Cancer 47: pp. 890-905 CrossRef
    52. Sun, W, Gaykalova, DA, Ochs, MF, Mambo, E, Arnaoutakis, D, Liu, Y, Loyo, M, Agrawal, N, Howard, J, Li, R, Ahn, S, Fertig, E, Sidransky, D, Houghton, J, Buddavarapu, K, Sanford, T, Choudhary, A, Darden, W, Adai, A, Latham, G, Bishop, J, Sharma, R, Westra, WH, Hennessey, P, Chung, CH, Califano, JA (2014) Activation of the NOTCH pathway in head and neck cancer. Cancer Res 74: pp. 1091-1104 CrossRef
    53. Yan, Q, Dutt, S, Xu, R, Graves, K, Juszczynski, P, Manis, JP, Shipp, MA (2009) BBAP monoubiquitylates histone H4 at lysine 91 and selectively modulates the DNA damage response. Mol Cell 36: pp. 110-120 CrossRef
    54. Slack, JK, Adams, RB, Rovin, JD, Bissonette, EA, Stoker, CE, Parsons, JT (2001) Alterations in the focal adhesion kinase/Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells. Oncogene 20: pp. 1152-1163 CrossRef
    55. Wu, HC, Hsieh, JT, Gleave, ME, Brown, NM, Pathak, S, Chung, LW (1994) Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer 57: pp. 406-412 CrossRef
    56. Horoszewicz, JS, Leong, SS, Chu, TM, Wajsman, ZL, Friedman, M, Papsidero, L, Kim, U, Chai, LS, Kakati, S, Arya, SK, Sandberg, AA (1980) The LNCaP cell line鈥揳 new model for studies on human prostatic carcinoma. Prog Clin Biol Res 37: pp. 115-132
    57. Horoszewicz, JS, Leong, SS, Kawinski, E, Karr, JP, Rosenthal, H, Chu, TM, Mirand, EA, Murphy, GP (1983) LNCaP model of human prostatic carcinoma. Cancer Res 43: pp. 1809-1818
    58. Kaighn, ME, Narayan, KS, Ohnuki, Y, Lechner, JF, Jones, LW (1979) Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17: pp. 16-23
    59. Stone, KR, Mickey, DD, Wunderli, H, Mickey, GH, Paulson, DF (1978) Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21: pp. 274-281 CrossRef
    60. Singh, PP, Joshi, S, Russell, PJ, Verma, ND, Wang, X, Khatri, A (2011) Molecular chemotherapy and chemotherapy: a new front against late-stage hormone-refractory prostate cancer. Clin Cancer Res 17: pp. 4006-4018 CrossRef
    61. Ranasinghe, WK, Xiao, L, Kovac, S, Chang, M, Michiels, C, Bolton, D, Shulkes, A, Baldwin, GS, Patel, O (2013) The role of hypoxia-inducible factor 1alpha in determining the properties of castrate-resistant prostate cancers. PLoS One 8: pp. e54251 CrossRef
    62. Hoosein, NM, Boyd, DD, Hollas, WJ, Mazar, A, Henkin, J, Chung, LW (1991) Involvement of urokinase and its receptor in the invasiveness of human prostatic carcinoma cell lines. Cancer Commun 3: pp. 255-264
    63. Tremblay, L, Hauck, W, Aprikian, AG, Begin, LR, Chapdelaine, A, Chevalier, S (1996) Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int J Cancer 68: pp. 164-171 CrossRef
    64. Tremblay, L, Hauck, W, Nguyen, LT, Allard, P, Landry, F, Chapdelaine, A, Chevalier, S (1996) Regulation and activation of focal adhesion kinase and paxillin during the adhesion, proliferation, and differentiation of prostatic epithelial cells in vitro and in vivo. Mol Endocrinol 10: pp. 1010-1020
    65. Keer, HN, Gaylis, FD, Kozlowski, JM, Kwaan, HC, Bauer, KD, Sinha, AA, Wilson, MJ (1991) Heterogeneity in plasminogen activator (PA) levels in human prostate cancer cell lines: increased PA activity correlates with biologically aggressive behavior. Prostate 18: pp. 201-214 CrossRef
    66. Erb, HH, Langlechner, RV, Moser, PL, Handle, F, Casneuf, T, Verstraeten, K, Schlick, B, Schafer, G, Hall, B, Sasser, K, Culig, Z, Santer, FR (2013) IL6 sensitizes prostate cancer to the antiproliferative effect of IFNalpha2 through IRF9. Endocr Relat Cancer 20: pp. 677-689 CrossRef
    67. Dunn, GP, Sheehan, KC, Old, LJ, Schreiber, RD (2005) IFN unresponsiveness in LNCaP cells due to the lack of JAK1 gene expression. Cancer Res 65: pp. 3447-3453
    68. Rossi, MR, Hawthorn, L, Platt, J, Burkhardt, T, Cowell, JK, Ionov, Y (2005) Identification of inactivating mutations in the JAK1, SYNJ2, and CLPTM1 genes in prostate cancer cells using inhibition of nonsense-mediated decay and microarray analysis. Cancer Genet Cytogenet 161: pp. 97-103 CrossRef
    69. Regis, G, Pensa, S, Boselli, D, Novelli, F, Poli, V (2008) Ups and downs: the STAT1:STAT3 seesaw of Interferon and gp130 receptor signalling. Semin Cell Dev Biol 19: pp. 351-359 CrossRef
    70. Sikorski, K, Czerwoniec, A, Bujnicki, JM, Wesoly, J, Bluyssen, HA (2011) STAT1 as a novel therapeutical target in pro-atherogenic signal integration of IFNgamma, TLR4 and IL-6 in vascular disease. Cytokine Growth Factor Rev 22: pp. 211-219 CrossRef
    71. Qing, Y, Stark, GR (2004) Alternative activation of STAT1 and STAT3 in response to interferon-gamma. J Biol Chem 279: pp. 41679-41685 CrossRef
    72. Schiavone, D, Avalle, L, Dewilde, S, Poli, V (2011) The immediate early genes Fos and Egr1 become STAT1 transcriptional targets in the absence of STAT3. FEBS Lett 585: pp. 2455-2460 CrossRef
    73. Decker, T, Kovarik, P (2000) Serine phosphorylation of STATs. Oncogene 19: pp. 2628-2637 CrossRef
    74. Stancato, LF, David, M, Carter-Su, C, Larner, AC, Pratt, WB (1996) Preassociation of STAT1 with STAT2 and STAT3 in separate signalling complexes prior to cytokine stimulation. J Biol Chem 271: pp. 4134-4137 CrossRef
    75. Djeu, JY, Wei, S (2009) Clusterin and chemoresistance. Adv Cancer Res 105: pp. 77-92 CrossRef
    76. Epling-Burnette, PK, Zhong, B, Bai, F, Jiang, K, Bailey, RD, Garcia, R, Jove, R, Djeu, JY, Loughran, TP, Wei, S (2001) Cooperative regulation of Mcl-1 by Janus kinase/stat and phosphatidylinositol 3-kinase contribute to granulocyte-macrophage colony-stimulating factor-delayed apoptosis in human neutrophils. J Immunol 166: pp. 7486-7495 CrossRef
    77. Sallman, DA, Chen, X, Zhong, B, Gilvary, DL, Zhou, J, Wei, S, Djeu, JY (2007) Clusterin mediates TRAIL resistance in prostate tumor cells. Mol Cancer Ther 6: pp. 2938-2947 CrossRef
    78. Shou, J, Soriano, R, Hayward, SW, Cunha, GR, Williams, PM, Gao, WQ (2002) Expression profiling of a human cell line model of prostatic cancer reveals a direct involvement of interferon signaling in prostate tumor progression. Proc Natl Acad Sci U S A 99: pp. 2830-2835 CrossRef
    79. Sokoloff, MH, Tso, CL, Kaboo, R, Taneja, S, Pang, S, de Kernion, JB, Belldegrun, AS (1996) In vitro modulation of tumor progression-associated properties of hormone refractory prostate carcinoma cell lines by cytokines. Cancer 77: pp. 1862-1872 CrossRef
    80. Yan, Q, Xu, R, Zhu, L, Cheng, X, Wang, Z, Manis, J, Shipp, MA (2013) BAL1 and its partner E3 ligase, BBAP, link Poly(ADP-ribose) activation, ubiquitylation, and double-strand DNA repair independent of ATM, MDC1, and RNF8. Mol Cell Biol 33: pp. 845-857 CrossRef
    81. Feijs, KL, Forst, AH, Verheugd, P, Luscher, B (2013) Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat Rev Mol Cell Biol 14: pp. 443-451 CrossRef
    82. Das, S, Roth, CP, Wasson, LM, Vishwanatha, JK (2007) Signal transducer and activator of transcription-6 (STAT6) is a constitutively expressed survival factor in human prostate cancer. Prostate 67: pp. 1550-1564 CrossRef
    83. Andersson, CD, Karlberg, T, Ekblad, T, Lindgren, AE, Thorsell, AG, Spjut, S, Uciechowska, U, Niemiec, MS, Wittung-Stafshede, P, Weigelt, J, Elofsson, M, Schuler, H, Linusson, A (2012) Discovery of ligands for ADP-ribosyltransferases via docking-based virtual screening. J Med Chem 55: pp. 7706-7718 CrossRef
    84. Wahlberg, E, Karlberg, T, Kouznetsova, E, Markova, N, Macchiarulo, A, Thorsell, AG, Pol, E, Frostell, A, Ekblad, T, Oncu, D, Kull, B, Robertson, GM, Pellicciari, R, Schuler, H, Weigelt, J (2012) Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol 30: pp. 283-288 CrossRef
    85. Ekblad, T, Camaioni, E, Schuler, H, Macchiarulo, A (2013) PARP inhibitors: polypharmacology versus selective inhibition. FEBS J 280: pp. 3563-3575 CrossRef
    86. Karlberg, T, Hammarstrom, M, Schutz, P, Svensson, L, Schuler, H (2010) Crystal structure of the catalytic domain of human PARP2 in complex with PARP inhibitor ABT-888. Biochemistry 49: pp. 1056-1058 CrossRef
    87. Baran-Marszak, F, Feuillard, J, Najjar, I, Le Clorennec, C, Bechet, JM, Dusanter-Fourt, I, Bornkamm, GW, Raphael, M, Fagard, R (2004) Differential roles of STAT1alpha and STAT1beta in fludarabine-induced cell cycle arrest and apoptosis in human B cells. Blood 104: pp. 2475-2483 CrossRef
    88. Sanda, T, Tyner, JW, Gutierrez, A, Ngo, VN, Glover, J, Chang, BH, Yost, A, Ma, W, Fleischman, AG, Zhou, W, Yang, Y, Kleppe, M, Ahn, Y, Tatarek, J, Kelliher, MA, Neuberg, DS, Levine, RL, Moriggl, R, Muller, M, Gray, NS, Jamieson, CH, Weng, AP, Staudt, LM, Druker, BJ, Look, AT (2013) TYK2-STAT1-BCL2 pathway dependence in T-cell acute lymphoblastic leukemia. Cancer Discov 3: pp. 564-577 CrossRef
    89. Yang, H, Lee, SM, Gao, B, Zhang, J, Fang, D (2013) The histone deacetylase Sirtuin 1 deacetylates IRF1 and programs dendritic cells to control Th17 differentiation during autoimmune inflammation. J Biol Chem 288: pp. 37256-37266 CrossRef
    90. Sharf, R, Meraro, D, Azriel, A, Thornton, AM, Ozato, K, Petricoin, EF, Larner, AC, Schaper, F, Hauser, H, Levi, BZ (1997) Phosphorylation events modulate the ability of interferon consensus sequence binding protein to interact with interferon regulatory factors and to bind DNA. J Biol Chem 272: pp. 9785-9792 CrossRef
    91. Lin, R, Hiscott, J (1999) A role for casein kinase II phosphorylation in the regulation of IRF-1 transcriptional activity. Mol Cell Biochem 191: pp. 169-180 CrossRef
    92. Shimizu, T, Miyakawa, Y, Oda, A, Kizaki, M, Ikeda, Y (2003) STI571-resistant KT-1 cells are sensitive to interferon-alpha accompanied by the loss of T-cell protein tyrosine phosphatase and prolonged phosphorylation of Stat1. Exp Hematol 31: pp. 601-608 CrossRef
    93. ten Hoeve, J, de Jesus, I-SM, Fu, Y, Zhu, W, Tremblay, M, David, M, Shuai, K (2002) Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol 22: pp. 5662-5668 CrossRef
    94. Heinonen, KM, Bourdeau, A, Doody, KM, Tremblay, ML (2009) Protein tyrosine phosphatases PTP-1B and TC-PTP play nonredundant roles in macrophage development and IFN-gamma signaling. Proc Natl Acad Sci U S A 106: pp. 9368-9372 CrossRef
    95. Aguiar, RC, Yakushijin, Y, Kharbanda, S, Salgia, R, Fletcher, JA, Shipp, MA (2000) BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration. Blood 96: pp. 4328-4334
    96. Kleine, H, Poreba, E, Lesniewicz, K, Hassa, PO, Hottiger, MO, Litchfield, DW, Shilton, BH, Luscher, B (2008) Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 32: pp. 57-69 CrossRef
    97. Hassa, PO, Haenni, SS, Buerki, C, Meier, NI, Lane, WS, Owen, H, Gersbach, M, Imhof, R, Hottiger, MO (2005) Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription. J Biol Chem 280: pp. 40450-40464 CrossRef
    98. Sen, S, Roy, K, Mukherjee, S, Mukhopadhyay, R, Roy, S (2011) Restoration of IFNgammaR subunit assembly, IFNgamma signaling and parasite clearance in Leishmania donovani infected macrophages: role of membrane cholesterol. PLoS Pathog 7: pp. e1002229 CrossRef
    99. Yanagawa, T, Funasaka, T, Tsutsumi, S, Hu, H, Watanabe, H, Raz, A (2007) Regulation of phosphoglucose isomerase/autocrine motility factor activities by the poly(ADP-ribose) polymerase family-14. Cancer Res 67: pp. 8682-8689 CrossRef
  • 刊物主题:Cancer Research; Oncology;
  • 出版者:BioMed Central
  • ISSN:1476-4598
文摘
Background Prostate cancer (PCa) is one of the leading causes of cancer-related mortality and morbidity in the aging male population and represents the most frequently diagnosed malignancy in men around the world. The Deltex (DTX)-3-like E3 ubiquitin ligase (DTX3L), also known as B-lymphoma and BAL-associated protein (BBAP), was originally identified as a binding partner of the diphtheria-toxin-like macrodomain containing ADP-ribosyltransferase-9 (ARTD9), also known as BAL1 and PARP9. We have previously demonstrated that ARTD9 acts as a novel oncogenic survival factor in high-risk, chemo-resistant, diffuse large B cell lymphoma (DLBCL). The mono-ADP-ribosyltransferase ARTD8, also known as PARP14 functions as a STAT6-specific co-regulator of IL4-mediated proliferation and survival in B cells. Methods Co-expression of DTX3L, ARTD8, ARTD9 and STAT1 was analyzed in the metastatic PCa (mPCa) cell lines PC3, DU145, LNCaP and in the normal prostate luminal epithelial cell lines HPE and RWPE1. Effects on cell proliferation, survival and cell migration were determined in PC3, DU145 and/or LNCaP cells depleted of DTX3L, ARTD8, ARTD9, STAT1 and/or IRF1 compared to their proficient control cells, respectively. In further experiments, real-time RT-PCR, Western blot, immunofluorescence and co-immunoprecipitations were conducted to evaluate the physical and functional interactions between DTX3L, ARTD8 and ARTD9. Results Here we could identify DTX3L, ARTD9 and ARTD8 as novel oncogenic survival factors in mPCa cells. Our studies revealed that DTX3L forms a complex with ARTD8 and mediates together with ARTD8 and ARTD9 proliferation, chemo-resistance and survival of mPCa cells. In addition, DTX3L, ARTD8 and ARTD9 form complexes with each other. Our study provides first evidence that the enzymatic activity of ARTD8 is required for survival of mPCa cells. DTX3L and ARTD9 act together as repressors of the tumor suppressor IRF1 in mPCa cells. Furthermore, the present study shows that DTX3L together with STAT1 and STAT3 is implicated in cell migration of mPCa cells. Conclusions Our data strongly indicate that a crosstalk between STAT1, DTX3L and ARTD-like mono-ADP-ribosyltransferases mediates proliferation and survival of mPCa cells. The present study further suggests that the combined targeted inhibition of STAT1, ARTD8, ARTD9 and/or DTX3L could increase the efficacy of chemotherapy or radiation treatment in prostate and other high-risk tumor types with an increased STAT1 signaling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700