Essential regions in the membrane domain of bacterial complex I (NDH-1): the machinery for proton translocation
详细信息    查看全文
  • 作者:Motoaki Sato (1) (2)
    Jesus Torres-Bacete (1) (3)
    Prem Kumar Sinha (1) (4)
    Akemi Matsuno-Yagi (1)
    Takao Yagi (1)
  • 关键词:NADH Dehydrogenase ; Complex I ; NDH ; 1 ; Genetic engineering ; Proton translocation ; Escherichia coli
  • 刊名:Journal of Bioenergetics and Biomembranes
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:46
  • 期:4
  • 页码:279-287
  • 全文大小:1,445 KB
  • 参考文献:1. Amarneh B, Vik SB (2003) Mutagenesis of subunit N of the escherichia coli complex I identification of the initiation codon and the sensitivity of mutants to decylubiquinone. Biochem 42(17):4800鈥?808 CrossRef
    2. Andrews B, Carroll J, Ding S, Fearnley IM, Walker JE (2013) Assembly factors for the membrane arm of human complex I. Proc Natl Acad Sci U S A 110(47):18934鈥?8939 CrossRef
    3. Baradaran R, Berrisford JM, Minhas GS, Sazanov LA (2013) Crystal structure of the entire respiratory complex I. Nature 494(7438):443鈥?48 CrossRef
    4. Batista AP, Marreiros BC, Pereira MM (2012) The role of proton and sodium ions in energy transduction by respiratory complex I. IUBMB Life 64(6):492鈥?98 CrossRef
    5. Belevich G, Knuuti J, Verkhovsky MI, Wikstrom M, Verkhovskaya M (2011) Probing the mechanistic role of the long alpha-helix in subunit L of respiratory complex I from escherichia coli by site-directed mutagenesis. Mol Microbiol 82(5):1086鈥?095 CrossRef
    6. Berrisford JM, Sazanov LA (2009) Structural basis for the mechanism of respiratory complex I. J Biol Chem 284(43):29773鈥?9783 CrossRef
    7. Brandt U (2006) Energy converting NADH: quinone oxidoreductase (complex I). Annu Rev Biochem 75:69鈥?2 CrossRef
    8. Cardol P, Lapaille M, Minet P, Franck F, Matagne RF, Remacle C (2006) ND3 and ND4L subunits of mitochondrial complex I, both nucleus encoded in chlamydomonas reinhardtii, are required for activity and assembly of the enzyme. Eukaryot Cell 5(9):1460鈥?467 CrossRef
    9. Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281(43):32724鈥?2727 CrossRef
    10. Chevallet M, Dupuis A, Lunardi J, van Belzen R, Albracht SP, Issartel JP (1997) The NuoI subunit of the rhodobacter capsulatus respiratory complex I (equivalent to the bovine TYKY subunit) is required for proper assembly of the membraneous and peripheral domains of the enzyme. Eur J Biochem 250(2):451鈥?58 CrossRef
    11. Cronan JE, Fearnley IM, Walker JE (2005) Mammalian mitochondria contain a soluble acyl carrier protein. FEBS Lett 579(21):4892鈥?896 CrossRef
    12. Darrouzet E, Dupuis A (1997) Genetic evidence for the existence of two quinone related inhibitor binding sites in NADH-CoQ reductase. Biochim Biophys Acta 1319(1):1鈥? CrossRef
    13. Drose S, Krack S, Sokolova L, Zwicker K, Barth HD, Morgner N et al (2011) Functional dissection of the proton pumping modules of mitochondrial complex I. PLoS Biol 9(8):e1001128 CrossRef
    14. Dupuis A, Chevallet M, Darrouzet E, Duborjal H, Lunardi J, Issartel JP (1998) The complex I from rhodobacter capsulatus. Biochim Biophys Acta 1364(2):147鈥?65 CrossRef
    15. Earley FG, Patel SD, Ragan I, Attardi G (1987) Photolabelling of a mitochondrially encoded subunit of NADH dehydrogenase with [3H] dihydrorotenone. FEBS Lett 219(1):108鈥?12 CrossRef
    16. Efremov RG, Sazanov LA (2011) Structure of the membrane domain of respiratory complex I. Nature 476(7361):414鈥?20 CrossRef
    17. Efremov RG, Sazanov LA (2012) The coupling mechanism of respiratory complex I - a structural and evolutionary perspective. Biochim Biophys Acta 1817(10):1785鈥?795 CrossRef
    18. Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465(7297):441鈥?45 CrossRef
    19. Euro L, Belevich G, Verkhovsky MI, Wikstrom M, Verkhovskaya M (2008) Conserved lysine residues of the membrane subunit NuoM are involved in energy conversion by the proton-pumping NADH:ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1777(9):1166鈥?172 CrossRef
    20. Euro L, Belevich G, Bloch DA, Verkhovsky MI, Wikstrom M, Verkhovskaya M (2009) The role of the invariant glutamate 95 in the catalytic site of complex I from escherichia coli. Biochim Biophys Acta 1787(1):68鈥?3 CrossRef
    21. Falk-Krzesinski HJ, Wolfe AJ (1998) Genetic analysis of the nuo locus, which encodes the proton-translocating NADH dehydrogenase in escherichia coli. J Bacteriol 180(5):1174鈥?184
    22. Fearnley IM, Walker JE (1992) Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim Biophys Acta 1140(2):105鈥?34 CrossRef
    23. Flemming D, Schlitt A, Spehr V, Bischof T, Friedrich T (2003) Iron-sulfur cluster N2 of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I) is located on subunit NuoB. J Biol Chem 278(48):47602鈥?7609 CrossRef
    24. Friedrich T, Weiss H (1997) Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules. J Theor Biol 187(4):529鈥?40 CrossRef
    25. Galkin AS, Grivennikova VG, Vinogradov AD (1999) 鈫扝+/2e- stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles. FEBS Lett 451(2):157鈥?61 CrossRef
    26. Galkin A, Abramov AY, Frakich N, Duchen MR, Moncada S (2009) Lack of oxygen deactivates mitochondrial complex I: implications for ischemic injury? J Biol Chem 284(52):36055鈥?6061 CrossRef
    27. Hedderich R (2004) Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomembr 36(1):65鈥?5 CrossRef
    28. Hinchliffe P, Sazanov LA (2005) Organization of iron-sulfur clusters in respiratory complex I. Science 309(5735):771鈥?74 CrossRef
    29. Hirst J (2011) Why does mitochondrial complex I have so many subunits? Biochem J 437(2):e1鈥揺3 CrossRef
    30. Hoefs SJ, van Spronsen FJ, Lenssen EW, Nijtmans LG, Rodenburg RJ, Smeitink JA et al (2011) NDUFA10 mutations cause complex I deficiency in a patient with leigh disease. Eur J Hum Genet 19(3):270鈥?74 CrossRef
    31. Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329(5990):448鈥?51 CrossRef
    32. Kajiyama Y, Otagiri M, Sekiguchi J, Kudo T, Kosono S (2009) The MrpA, MrpB and MrpD subunits of the Mrp antiporter complex in bacillus subtilis contain membrane-embedded and essential acidic residues. Microbiology 155(Pt 7):2137鈥?147 CrossRef
    33. Kao MC, Di Bernardo S, Perego M, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T (2004) Functional roles of four conserved charged residues in the membrane domain subunit NuoA of the proton-translocating NADH-quinone oxidoreductase from escherichia coli. J Biol Chem 279(31):32360鈥?2366 CrossRef
    34. Kao MC, Di Bernardo S, Nakamaru-Ogiso E, Miyoshi H, Matsuno-Yagi A, Yagi T (2005a) Characterization of the membrane domain subunit NuoJ (ND6) of the NADH-quinone oxidoreductase from escherichia coli by chromosomal DNA manipulation. Biochemistry 44(9):3562鈥?571 CrossRef
    35. Kao MC, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T (2005b) Characterization of the membrane domain subunit NuoK (ND4L) of the NADH-quinone oxidoreductase from escherichia coli. Biochemistry 44(27):9545鈥?554 CrossRef
    36. Kervinen M, Patsi J, Finel M, Hassinen IE (2004) A pair of membrane-embedded acidic residues in the NuoK subunit of escherichia coli NDH-1, a counterpart of the ND4L subunit of the mitochondrial complex I, are required for high ubiquinone reductase activity. Biochemistry 43(3):773鈥?81 CrossRef
    37. Koilkonda RD, Guy J (2011) Leber鈥檚 hereditary optic neuropathy-gene therapy: from benchtop to bedside. J Ophthalmol 2011:179412
    38. Kulawiak B, Hopker J, Gebert M, Guiard B, Wiedemann N, Gebert N (2013) The mitochondrial protein import machinery has multiple connections to the respiratory chain. Biochim Biophys Acta 1827(5):612鈥?26 CrossRef
    39. Kurki S, Zickermann V, Kervinen M, Hassinen I, Finel M (2000) Mutagenesis of three conserved glu residues in a bacterial homologue of the ND1 subunit of complex I affects ubiquinone reduction kinetics but not inhibition by dicyclohexylcarbodiimide. Biochemistry 39(44):13496鈥?3502 CrossRef
    40. Link AJ, Phillips D, Church GM (1997) Methods for generating precise deletions and insertions in the genome of wild-type escherichia coli: application to open reading frame characterization. J Bacteriol 179(20):6228鈥?237
    41. Lunardi J, Darrouzet E, Dupuis A, Issartel JP (1998) The nuoM arg368his mutation in NADH:ubiquinone oxidoreductase from rhodobacter capsulatus: a model for the human nd4-11778 mtDNA mutation associated with Leber鈥檚 hereditary optic neuropathy. Biochim Biophys Acta 1407(2):114鈥?24 CrossRef
    42. Mathiesen C, Hagerhall C (2002) Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim Biophys Acta 1556(2鈥?):121鈥?32 CrossRef
    43. Michel J, DeLeon-Rangel J, Zhu S, Van Ree K, Vik SB (2011) Mutagenesis of the L, M, and N subunits of complex I from escherichia coli indicates a common role in function. PLoS One 6(2):e17420 CrossRef
    44. Moparthi VK, Kumar B, Mathiesen C, Hagerhall C (2011) Homologous protein subunits from escherichia coli NADH:quinone oxidoreductase can functionally replace MrpA and MrpD in bacillus subtilis. Biochim Biophys Acta 1807(4):427鈥?36 CrossRef
    45. Murai M, Ishihara A, Nishioka T, Yagi T, Miyoshi H (2007) The ND1 subunit constructs the inhibitor binding domain in bovine heart mitochondrial complex I. Biochemistry 46(21):6409鈥?416 CrossRef
    46. Nakamaru-Ogiso E, Kao MC, Chen H, Sinha SC, Yagi T, Ohnishi T (2010) The membrane subunit NuoL (ND5) is involved in the indirect proton pumping mechanism of escherichia coli complex I. J Biol Chem 285(50):39070鈥?9078 CrossRef
    47. Nowicka B, Kruk J (2010) Occurrence, biosynthesis and function of isoprenoid quinones. Biochim Biophys Acta 1797(9):1587鈥?605 CrossRef
    48. Ohnishi T, Nakamaru-Ogiso E (2008) Were there any 鈥渕isassignments鈥?among iron-sulfur clusters N4, N5 and N6b in NADH-quinone oxidoreductase (complex I)? Biochim Biophys Acta 1777(7鈥?):703鈥?10 CrossRef
    49. Pryde KR, Hirst J (2011) Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer. J Biol Chem 286(20):18056鈥?8065 CrossRef
    50. Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N (2006) High-efficiency biolistic transformation of chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci U S A 103(12):4771鈥?776 CrossRef
    51. Rhein VF, Carroll J, Ding S, Fearnley IM, Walker JE (2013) NDUFAF7 methylates arginine 85 in the NDUFS2 subunit of human complex I. J Biol Chem 288(46):33016鈥?3026 CrossRef
    52. Roberts PG, Hirst J (2012) The deactive form of respiratory complex I from mammalian mitochondria is a Na+/H鈥?鈥塧ntiporter. J Biol Chem 287(41):34743鈥?4751 CrossRef
    53. Sato M, Sinha PK, Torres-Bacete J, Matsuno-Yagi A, Yagi T (2013) Energy transducing roles of antiporter-like subunits in Escherichia coli NDH-1 with main focus on subunit NuoN (ND2). J Biol Chem 288(34):24705鈥?4716 CrossRef
    54. Sazanov LA (2007) Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 46(9):2275鈥?288 CrossRef
    55. Screpanti E, Hunte C (2007) Discontinuous membrane helices in transport proteins and their correlation with function. J Struct Biol 159(2):261鈥?67 CrossRef
    56. Sekiguchi K, Murai M, Miyoshi H (2009) Exploring the binding site of acetogenin in the ND1 subunit of bovine mitochondrial complex I. Biochim Biophys Acta 1787(9):1106鈥?111 CrossRef
    57. Shiraishi Y, Murai M, Sakiyama N, Ifuku K, Miyoshi H (2012) Fenpyroximate binds to the interface between PSST and 49聽kDa subunits in mitochondrial NADH-ubiquinone oxidoreductase. Biochemistry 51(9):1953鈥?963 CrossRef
    58. Sinha PK, Castro-Guerrero N, Matsuno-Yagi A, Yagi T, Torres-Bacete J (2009a) Bacterial complex I (NDH-1): functional roles of the hydrophobic domain. Curr Top Biochem Res 11:79鈥?0
    59. Sinha PK, Torres-Bacete J, Nakamaru-Ogiso E, Castro-Guerrero N, Matsuno-Yagi A, Yagi T (2009b) Critical roles of subunit NuoH (ND1) in the assembly of peripheral subunits with the membrane domain of escherichia coli NDH-1. J Biol Chem 284(15):9814鈥?823 CrossRef
    60. Sinha PK, Nakamaru-Ogiso E, Torres-Bacete J, Sato M, Castro-Guerrero N, Ohnishi T et al (2012) Electron transfer in subunit NuoI (TYKY) of Escherichia coli NADH:quinone oxidoreductase (NDH-1). J Biol Chem 287(21):17363鈥?7373 CrossRef
    61. Steffen W, Steuber J (2013) Cation transport by the respiratory NADH:quinone oxidoreductase (complex I): facts and hypotheses. Biochem Soc Trans 41(5):1280鈥?287 CrossRef
    62. Steimle S, Bajzath C, Dorner K, Schulte M, Bothe V, Friedrich T (2011) Role of subunit NuoL for proton translocation by respiratory complex I. Biochemistry 50(16):3386鈥?393 CrossRef
    63. Torres-Bacete J, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T (2007) Characterization of the NuoM (ND4) subunit in Escherichia coli NDH-1: conserved charged residues essential for energy-coupled activities. J Biol Chem 282(51):36914鈥?6922 CrossRef
    64. Torres-Bacete J, Sinha PK, Castro-Guerrero N, Matsuno-Yagi A, Yagi T (2009) Features of subunit NuoM (ND4) in escherichia coli NDH-1: topology and implication of conserved GLU144 for coupling site 1. J Biol Chem 284(48):33062鈥?3069 CrossRef
    65. Torres-Bacete J, Sinha PK, Matsuno-Yagi A, Yagi T (2011) Structural contribution of C-terminal segments of NuoL (ND5) and NuoM (ND4) subunits of complex I from escherichia coli. J Biol Chem 286(39):34007鈥?4014 CrossRef
    66. Torres-Bacete J, Sinha PK, Sato M, Patki G, Kao MC, Matsuno-Yagi A et al (2012) Roles of subunit NuoK (ND4L) in the energy-transducing mechanism of escherichia coli NDH-1 (NADH:quinone oxidoreductase). J Biol Chem 287(51):42763鈥?2772 CrossRef
    67. Verkhovskaya M, Bloch DA (2013) Energy-converting respiratory complex I: on the way to the molecular mechanism of the proton pump. Int J Biochem Cell Biol 45(2):491鈥?11
    68. Vgenopoulou I, Gemperli AC, Steuber J (2006) Specific modification of a Na鈥?鈥塨inding site in NADH:quinone oxidoreductase from klebsiella pneumoniae with dicyclohexylcarbodiimide. J Bacteriol 188(9):3264鈥?272 CrossRef
    69. Videira A, Duarte M (2002) From NADH to ubiquinone in neurospora mitochondria. Biochim Biophys Acta 1555(1鈥?):187鈥?91 CrossRef
    70. Vinothkumar KR, Henderson R (2010) Structures of membrane proteins. Q Rev Biophys 43(1):65鈥?58 CrossRef
    71. Weidner U, Geier S, Ptock A, Friedrich T, Leif H, Weiss H (1993) The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J Mol Biol 233(1):109鈥?22 CrossRef
    72. Wikstrom M, Hummer G (2012) Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. Proc Natl Acad Sci U S A 109(12):4431鈥?436 CrossRef
    73. Yagi T (1993) The bacterial energy-transducing NADH-quinone oxidoreductases. Biochim Biophys Acta 1141(1):1鈥?7 CrossRef
    74. Yagi T, Dinh TM (1990) Identification of the NADH-binding subunit of NADH-ubiquinone oxidoreductase of paracoccus denitrificans. Biochemistry 29(23):5515鈥?520 CrossRef
    75. Yagi T, Hatefi Y (1988) Identification of the dicyclohexylcarbodiimide-binding subunit of NADH-ubiquinone oxidoreductase (complex I). J Biol Chem 263(31):16150鈥?6155
    76. Yagi T, Matsuno-Yagi A (2003) The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry 42(8):2266鈥?274 CrossRef
    77. Yagi T, Yano T, Matsuno-Yagi A (1993) Characteristics of the energy-transducing NADH-quinone oxidoreductase of paracoccus denitrificans as revealed by biochemical, biophysical, and molecular biological approaches. J Bioenerg Biomembr 25(4):339鈥?45 CrossRef
    78. Yagi T, Yano T, Di Bernardo S, Matsuno-Yagi A (1998) Procaryotic complex I (NDH-1), an overview. Biochim Biophys Acta 1364(2):125鈥?33 CrossRef
    79. Yagi T, Torres-Bacete J, Sinha PK, Castro-Guerrero N, Matsuno-Yagi A (2012) Characterization of bacterial complex I (NDH-1) by a Genetic Engineering Approach. In: Sazanov L (ed) A structural perspective on respiratory complex I, Springer Netherlands, p 147鈥?69
    80. Yakovlev G, Reda T, Hirst J (2007) Reevaluating the relationship between EPR spectra and enzyme structure for the iron sulfur clusters in NADH:quinone oxidoreductase. Proc Natl Acad Sci U S A 104(31):12720鈥?2725 CrossRef
    81. Yano T, Yagi T (1999) H (+)-translocating NADH-quinone oxidoreductase (NDH-1) of paracoccus denitrificans studies on topology and stoichiometry of the peripheral subunits. J Biol Chem 274(40):28606鈥?8611 CrossRef
    82. Zickermann V, Drose S, Tocilescu MA, Zwicker K, Kerscher S, Brandt U (2008) Challenges in elucidating structure and mechanism of proton pumping NADH:ubiquinone oxidoreductase (complex I). J Bioenerg Biomembr 40(5):475鈥?83 CrossRef
  • 作者单位:Motoaki Sato (1) (2)
    Jesus Torres-Bacete (1) (3)
    Prem Kumar Sinha (1) (4)
    Akemi Matsuno-Yagi (1)
    Takao Yagi (1)

    1. Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, CA, 92037, USA
    2. Department of Biological Research, Odawara Research Center, Nippon Soda Co., Ltd., Odawara, 250-0280, Japan
    3. Centro de investigaciones Biologicas del CSIC, Madrid, 28040, Spain
    4. College of Medicine, Pennsylvania State University, Hershey, PA, USA
  • ISSN:1573-6881
文摘
The proton-translocating NADH-quinone oxidoreductase (complex I/NDH-1) is the first and largest enzyme of the respiratory chain which has a central role in cellular energy production and is implicated in many human neurodegenerative diseases and aging. It is believed that the peripheral domain of complex I/NDH-1 transfers the electron from NADH to Quinone (Q) and the redox energy couples the proton translocation in the membrane domain. To investigate the mechanism of the proton translocation, in a series of works we have systematically studied all membrane subunits in the Escherichia coli NDH-1 by site-directed mutagenesis. In this mini-review, we have summarized our strategy and results of the mutagenesis by depicting residues essential for proton translocation, along with those for subunit connection. It is suggested that clues to understanding the driving forces of proton translocation lie in the similarities and differences of the membrane subunits, highlighting the communication of essential charged residues among the subunits. A possible proton translocation mechanism with all membrane subunits operating in unison is described.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700