Investigation of the links between heterocyst and biohydrogen production by diazotrophic cyanobacterium A. variabilis ATCC 29413
详细信息    查看全文
  • 作者:Siti Fatihah Salleh ; Azlina Kamaruddin ; Mohamad Hekarl Uzir…
  • 关键词:Azatryptophan ; Heterocyst ; Cyanobacteria ; Hydrogen ; Nitrogenase
  • 刊名:Archives of Microbiology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:198
  • 期:2
  • 页码:101-113
  • 全文大小:2,007 KB
  • 参考文献:Adams DG (1992) The effect of DL-7-azatryptophan on heterocyst development in the cyanobacterium Anabaena cylindrica. J Gen Mirobiol 138:355–362CrossRef
    Agrawal M, Kumar HD (1978) Effect of 7-Azatryptophan on heterocyst differentiation in Anabaena doliolum Bharadwaja. Proc Indian Acad Sci B 87B(1):31–39
    Allahverdiyeva Y, Leino H, Saari L, Fewer DP, Shunmugam S, Sivonen K, Aro E-M (2010) Screening for biohydrogen production by cyanobacteria isolated from the Baltic Sea and Finnish lakes. Int J Hydrog Energy 35:1117–1127CrossRef
    Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50(7):1834–1840CrossRef
    Benemann JR (1979) Production of nitrogen fertilizer with nitrogen-fixing blue-green algae. Enzyme Microb Technol 1:83–90CrossRef
    Benemann JR (1989) The future of microalgal biotechnology. Longman Scientific & Technical, Harlow
    Bothe H, Eisbrenner G (1977) Effect of 7-azatryptophan on nitrogen fixation and heterocyst formation in the blue-green alga Anabaena cylindrica. Biochem Physiol Pflanz 133:323–332
    Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74(4):529–551PubMedCentral CrossRef PubMed
    Bottomley PJ, Van Baalen C, Tabita FR (1980) Heterocyst differentiation and tryptophan metabolism in the cyanobacterium Anabaena sp. CA. Arch Biochem Biophys 203:204–213CrossRef PubMed
    Buikema WJ, Haselkorn R (2001) Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions. Proc Natl Acad Sci USA 98:2729–2734PubMedCentral CrossRef PubMed
    Chen C, Van Baalen C, Tabita FT (1987) Nitrogen starvation mediated by DL-7-Azatryptophan in the cyanobacterium Anabaena sp. strain CA. J Bacteriol 169(3):1107–1113PubMedCentral PubMed
    Chen M, Zhang Z, Wang C, Zhang L, Li J, Chang S, Mao Z, Li S (2013) Improving conversion efficiency of solar energy to electricity in cyanobacterial PEMFC by high levels of photo-H2 production. Int J Hydrog Energy 38(31):13556–13563CrossRef
    Chen M, Li J, Zhang L, Chang S, Liu C, Wang J, Li S (2014) Auto-flotation of heterocyst enables the efficient production of renewable energy in cyanobacteria. Nature Sci Rep 4:3998
    Christman H, Campbell E, Risser D, Phinney B, Chiu W-L, Meeks JC (2012) Systems level approaches to understanding and manipulating heterocyst differentiation in Nostoc punctiforme: sites of hydrogenase and nitrogenase synthesis and activity. In: Proceedings of the 2012 Department of Energy (DOE) Genomic Science Program Awardee Meeting, 72
    Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49(8):2106–2116CrossRef
    Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manag 51(12):2738–2749CrossRef
    Ferreira AF, Marques AC, Batista AP, Marques PAAS, Gouveia L, Silva CM (2012) Biological hydrogen production by Anabaena sp.—yield, energy and CO2 analysis including fermentative biomass recovery. Int J Hydrog Energy 37:179–190CrossRef
    Greenbaum E, Lee JW (1998) Photosynthetic hydrogen and oxygen production by green algae: an overview. Plenum Press, New York
    Hallenbeck PC (2012) Hydrogen production by cyanobacteria. Microbial technologies in advanced biofuels production. Springer, Canada, pp 15–28CrossRef
    Happe T, Schütz K, Böhme H (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182(6):1624–1631PubMedCentral CrossRef PubMed
    Huang C, Zong MH, Wu H, Liu QP (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100(19):4535–4538CrossRef PubMed
    Jang Y-S, Park JM, Choi S, Choi YJ, Seung DY, Cho JH, Lee SY (2012) Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 30(5):989–1000CrossRef PubMed
    Khetkorn W, Baebprasert W, Lindblad P, Incharoensakdi A (2012) Redirecting the electron flow towards the nitrogenase and bidirectional Hox hydrogenase by using specific inhibitors results in enhanced H2 production in the cyanobacterium Anabaena siamensis TISTR 8012. Bioresour Technol 118:265–271CrossRef PubMed
    Kondo T, Ishiura M (2000) The circadian clock of cyanobacteria. BioEssays 22(1):10–15CrossRef PubMed
    Leino H, Kosourov SN, Saari L, Sivonen K, Tsygankov AA, Aro EM, Allahverdiyeva Y, Milliken CE (2012) Extended H2 photoproduction by N2-fixing cyanobacteria immobilized in thin alginate films. Int J Hydrog Energy 37(1):151–161CrossRef
    Liu J, Bukatin VE, Tsygankov AA (2006) Light energy conversion into H2 by Anabaena variabilis mutant PK84 dense cultures exposed to nitrogen limitations. Int J Hydrog Energy 31(11):1591–1596CrossRef
    Madamwar D, Garg N, Shah V (2000) Cyanobacterial hydrogen production. World J Microbiol Biotechnol 16:757–767CrossRef
    Markov SA, Bazin MJ, Hall DO (1995) Hydrogen photoproduction and carbon dioxide uptake by immobilized Anabaena variabilis in a hollow-fiber photobioreactor. Enzyme Microb Technol 17(4):306–310CrossRef
    Markov SA, Thomas AD, Bazin MJ, Hall DO (1997) Photoproduction of hydrogen by cyanobacteria under partial vacuum in batch culture or in a photobioreactor. Int J Hydrog Energy 22(5):521–524CrossRef
    Markov SA, Protasov ES, Bybin VA, Eivazovaa ER, Stom DI (2015) Using immobilized cyanobacteria and culture medium contaminated with ammonium for H2 production in a hollow-fiber photobioreactor. int. J. Hydrog Energy 40(14):4752–4757CrossRef
    Marques AE, Barbosa AT, Jotta J, Coelho MC, Tamagnini P, Gouveia L (2011) Biohydrogen production by Anabaena sp. PCC 7120 wild-type and mutants under different conditions: light, nickel, propane, carbon dioxide and nitrogen. Biomass Bioenergy 35(10):4426–4434CrossRef
    Masukawa H, Mochimaru M, Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58:618–624CrossRef PubMed
    Masukawa H, Inoue K, Sakurai H, Wolk CP, Hausinger RP (2010) Site-directed mutagenesis of the Anabaena sp. Strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production. Appl Environ Microbiol 76(20):6741–6750PubMedCentral CrossRef PubMed
    Masukawa H, Sakurai H, Hausinger RP, Inoue K (2014) Sustained photobiological hydrogen production in the presence of N2 by nitrogenase mutants of the heterocyst-forming cyanobacterium Anabaena. Int J Hydrog Energy 39(34):19444–19451CrossRef
    Meeks JC, Castenholz RW (1971) Growth and photosynthesis in an extreme thermophile, Synechococcus Lividus (Cyanophyta). Arch Microbiol 78:25–41
    Melis A, Neidhardt J, Benemann JR (1999) Dunaliella salina (Chloropta) with small chlorophyll antenna size exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10:515–525CrossRef
    Mitchison GJ, Wilcox M (1973) Alteration in heterocyst pattern of Anabaena produced by 7-Azatryptophan. Nat New Biol 246:229–233CrossRef PubMed
    Mitchison GJ, Wilcox M, Smith RJ (1976) Measurement of an inhibitory zone. Science 191(4229):866–868CrossRef PubMed
    Nakajima Y, Itayama T (2003) Analysis of photosynthesis productivity of microalgal mass cultures. J Appl Phycol 15:497–505CrossRef
    Nakajima Y, Ueda R (2000) The effect of reducing light-harvesting pigment on marine microalgal productivity. J Appl Phycol 12:285–290CrossRef
    Ort DR, Zhu X, Melis A (2011) Optimizing antaenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85PubMedCentral CrossRef PubMed
    Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102(22):10163–10172CrossRef PubMed
    Prasanna R, Kumar R, Sood A, Prasanna BM, Singh PK (2006) Morphological, physiochemical and molecular characterization of Anabaena strains. Microbiol Res 161(3):187–202CrossRef PubMed
    Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R (2011) Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91:471–490PubMedCentral CrossRef PubMed
    Rogerson AC (1979) Modifiers of heterocyst repression and spacing and formation of heterocyst without nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 140(1):213–219PubMedCentral PubMed
    Salleh SF, Kamaruddin A, Uzir MH, Mohamed AR (2014) Effects of cell density, carbon dioxide and molybdenum concentration on biohydrogen production by Anabaena variabilis ATCC 29413. Energy Convers Manag 87:599–605CrossRef
    Schütz K, Happe T, Troshina O, Lindblad P, Leitão E, Oliveira P, Tamagnini P (2004) Cyanobacterial H2 production—a comparative analysis. Planta 218(3):350–359CrossRef PubMed
    Staal M, te Lintel-Hekkert S, Harren F, Stal L (2001) Nitrogenase activity in cyanobacteria measured by the acetylene reduction assay: a comparison between batch incubation and on-line monitoring. Environ Microbiol 3(5):343–351CrossRef PubMed
    Sveshnikov DA, Sveshnikova NV, Rao KK, Hall DO (1997) Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiol Lett 147(2):297–301CrossRef
    Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66(1):1PubMedCentral CrossRef PubMed
    Thiel T (2006) Nitrogenase, hydrogenase and hydrogen production by cyanobacteria. New Delhi, India, Pvt. Ltd
    Thiel T, Pratte B (2013) Alternative nitrogenases in anabaena variabilis: the role of molybdate and vanadate in nitrogenase gene. Adv Microbiol 3(6A):87–95CrossRef
    Thiel T, Lyons EM, Erker JC (1997) Characterization of genes for a second Mo-dependent nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 179(16):5222–5225PubMedCentral PubMed
    Thiel T, Pratte B, Zahalak M (2002) Transport of molybdate in the cyanobacterium Anabaena variabilis ATCC 29413. Arch Microbiol 179:50–56CrossRef PubMed
    Tsygankov AA (2007) Biological generation of hydrogen. Russ J Gen Chem 77(4):685–693CrossRef
    Tsygankov AA, Serebryakova LT, Rao KK, Hall DO (1998) Acetylene reduction and hydrogen photoproduction by wild-type and mutant strains of Anabaena at different CO2 and O2 concentrations. FEMS Microbiol Lett 167(1):13–17CrossRef
    Turner J, Sverdrup G, Mann MK, Maness PC, Kroposki B, Ghirardi M, Evans RJ, Blake D (2008) Renewable hydrogen production. Int J Energy Res 32(5):379–407CrossRef
    Tyagi VVS (1975) The heterocysts of blue-green algae (myxophyceae). Biol Rev 50(3):247–284CrossRef PubMed
    Van de Water S, Simon RD (1984) Heterocyst differentiation in Cylindrospermum licheniforme: studies on the role of transcription. J Gen Microbiol 130:789–796PubMed
    Weare NM, Benemann JR (1972) Nitrogen fixation by Anabaena cylindrica I. Localization of nitrogen fixation in heterocyst. Arch Microbiol 90:323–332
    Wei TF, Ramasubramanian TS, Golden JW (1994) Anabaena sp. strain PCC 7120 ntcA gene required for growth on nitrate and heterocyst development. J Bacteriol 176(15):4473PubMedCentral PubMed
    Wolk CP, Ernst A, Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 769–823CrossRef
    Wu SC, Lu PF, Lin YC, Chen PC, Lee CM (2012) Bio-hydrogen production enhancement by co-cultivating Rhodopseudomonas palustris WP3-5 and Anabaena sp. CH3. Int J Hydrog Energy 37(3):2231–2238CrossRef
    Xuefeng L (2010) A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv 28(6):742–746CrossRef
    Yong YC, Zhong JJ (2010) Recent advances in biodegradation in China: new microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation. Process Biochem 45(12):1937–1943CrossRef
    Yoon JH, Shin JH, Kim MS, Sim SJ, Park TH (2006) Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. Int J Hydrog Energy 31:721–727CrossRef
    Yu J, Takahashi P (2007) Biophotolysis-based hydrogen production by cyanobacteria and green microalgae Spain, Formatex
  • 作者单位:Siti Fatihah Salleh (1)
    Azlina Kamaruddin (1)
    Mohamad Hekarl Uzir (1)
    Khairiah Abd Karim (1)
    Abdul Rahman Mohamed (1)

    1. Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300, Nibong Tebal, Seberang Prai Selatan, Pulau Pinang, Malaysia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Microbial Ecology
    Biochemistry
    Cell Biology
    Biotechnology
    Ecology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-072X
文摘
This work investigates the effect of heterocyst toward biohydrogen production by A. variabilis. The heterocyst frequency was artificially promoted by adding an amino acid analog, in this case DL-7-azatryptophan into the growth medium. The frequency of heterocyst differentiation was found to be proportional to the concentration of azatryptophan (0–25 µM) in the medium. Conversely, the growth and nitrogenase activity were gradually suppressed. In addition, there was also a distinct shortening of the cells filaments and detachment of heterocyst from the vegetative cells. Analysis on the hydrogen production performance revealed that both the frequency and distribution of heterocyst in the filaments affected the rate of hydrogen production. The highest hydrogen production rate and yield (41 µmol H2 mg chl a−1 h−1 and 97 mL H2 mg chl a−1, respectively) were achieved by cells previously grown in 15 µM of azatryptophan with 14.5 % of heterocyst frequency. The existence of more isolated heterocyst has been shown to cause a relative loss in nitrogenase activity thus lowering the hydrogen production rate. Keywords Azatryptophan Heterocyst Cyanobacteria Hydrogen Nitrogenase

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700