Potential Application of Biohydrogen Production Liquid Waste as Phosphate Solubilizing Agent—A Study Using Soybean Plants
详细信息    查看全文
  • 作者:Saurabh Jyoti Sarma ; Satinder Kaur Brar…
  • 关键词:Biohydrogen ; Bioremediation ; Organic acids ; Phosphate solubilization
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:178
  • 期:5
  • 页码:865-875
  • 全文大小:639 KB
  • 参考文献:1.Şensöz, S., Angın, D., & Yorgun, S. (2000). Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil. Biomass and Bioenergy, 19, 271–279.CrossRef
    2.Sydney, E. B., Larroche, C., Novak, A. C., Nouaille, R., Sarma, S. J., et al. (2014). Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresource Technology, 159, 380–386.CrossRef
    3.Venkateswar, R. M., Amulya, K., Rohit, M. V., Sarma, P. N., & Venkata, M. S. (2014). Valorization of fatty acid waste for bioplastics production using Bacillus tequilensis: integration with dark-fermentative hydrogen production process. International Journal of Hydrogen Energy, 39, 7616–7626.CrossRef
    4.Fang, H. H., & Liu, H. (2002). Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 82, 87–93.CrossRef
    5.Mardad, I., Serrano, A., & Soukri, A. (2013). Solubilization of inorganic phosphate and production of organic acids by bacteria isolated from a Moroccan mineral phosphate deposit. African Journal of Microbiology Research, 7, 626–635.
    6.Zhu, H. J., Sun, L. F., Zhang, Y. F., Zhang, X. L., & Qiao, J. J. (2012). Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphate-solubilizing Pichia farinose FL7. Bioresource Technology, 111, 410–416.CrossRef
    7.Pott, R. W. M., Howe, C. J., & Dennis, J. S. (2014). The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. Bioresource Technology, 152, 464–470.CrossRef
    8.Zhou, Y., Nie, K., Zhang, X., Liu, S., Wang, M., et al. (2014). Production of fumaric acid from biodiesel-derived crude glycerol by Rhizopus arrhizus. Bioresource Technology, 163, 48–53.CrossRef
    9.Santibáñez, C., Varnero, M. T., & Bustamante, M. (2011). Residual glycerol from biodiesel manufacturing, waste or potential source of bioenergy: a review. Chilean Journal of Agricultural Research, 71, 469–475.CrossRef
    10.Pott, R. W. M., Howe, C. J., & Dennis, J. S. (2013). Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: comparison with organic acids and the identification of inhibitory compounds. Bioresource Technology, 130, 725–730.CrossRef
    11.Sarma, S. J., Brar, S. K., Le Bihan, Y., Buelna, G., & Soccol, C. R. (2013). Hydrogen production from meat processing and restaurant waste derived crude glycerol by anaerobic fermentation and utilization of the spent broth. Journal of Chemical Technology and Biotechnology, 88, 2264–2271.CrossRef
    12.Sarma, S. J., Brar, S. K., Le Bihan, Y., Buelna, G., & Soccol, C. R. (2014). Mitigation of the inhibitory effect of soap by magnesium salt treatment of crude glycerol—a novel approach for enhanced biohydrogen production from the biodiesel industry waste. Bioresource Technology, 151, 49–53.CrossRef
    13. https://​uwlab.​soils.​wisc.​edu/​files/​procedures/​DNR_​TotalP.​pdf (accessed on 02/04/2014).
    14.Murphy, J., & Riley, J. (1958). A single-solution method for the determination of soluble phosphate in sea water. Journal of the Marine Biological Association of the UK, 37, 9–14.CrossRef
    15.Sarma, S. J., Brar, S. K., Le Bihan, Y., & Buelna, G. (2013). Liquid waste from bio-hydrogen production—a commercially attractive alternative for phosphate solubilizing bio-fertilizer. International Journal of Hydrogen Energy, 38, 8704–8707.CrossRef
    16.Ngo, T. A., Kim, M. S., & Sim, S. J. (2011). High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. International Journal of Hydrogen Energy, 36, 5836–5842.CrossRef
    17.Kumar, V., & Singh, K. (2001). Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria. Bioresource Technology, 76, 173–175.CrossRef
    18.Salehi, M., Ashiri, F., & Salehi, H. (2008). Effect of different ethanol concentrations on seed germination of three turfgrass genera. Advances in Natural and Applied Science, 2, 6–9.
    19.Rosa, P. R. F., Santos, S. C., Sakamoto, I. K., Varesche, M. B. A., & Silva, E. L. (2014). Hydrogen production from cheese whey with ethanol-type fermentation: effect of hydraulic retention time on the microbial community composition. Bioresource Technology, 161, 10–19.CrossRef
    20.Foglia, D., Wukovits, W., Friedl, A., De Vrije, T., & Claassen, P. (2011). Fermentative hydrogen production: influence of application of mesophilic and thermophilic bacteria on mass and energy balances. Chemical Engineering Transaction, 25, 815–820.
    21.Brannon-Peppas, L. (1995). Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. International Journal of Pharmaceutics, 116, 1–9.CrossRef
    22.Han, W., Liu, D. N., Shi, Y. W., Tang, J. H., Li, Y. F., & Ren, N. Q. (2015). Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors. Bioresource Technology, 180, 54–58.CrossRef
    23.Han, W., Ye, M., Zhu, A. J., Zhao, H. T., & Li, Y. F. (2015). Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. Bioresource Technology, 191, 24–29.CrossRef
    24.Delorme, T., Angle, J., Coale, F., & Chaney, R. (2000). Phytoremediation of phosphorus-enriched soils. International Journal of Phytoremediation, 2, 173–181.CrossRef
    25.Ryan, VAA., Gaston, L., Cooper, D. and Stephens, M. (2006). Phytoremediation of a high phosphorus soil by summer and winter hay harvest. Louisiana State University.
    26.Gotcher, M. J., Zhang, H., Schroder, J. L., & Payton, M. E. (2014). Phytoremediation of soil phosphorus with crabgrass. Agronomy Journal, 106, 528–536.CrossRef
  • 作者单位:Saurabh Jyoti Sarma (1)
    Satinder Kaur Brar (1)
    Yann LeBihan (2)
    Gerardo Buelna (2)

    1. Institut National de la Recherche Scientifique (INRS), Centre Eau, Terre & Environnement (ETE), 490, Rue de la Couronne, Québec, QC, G1K 9A9, Canada
    2. Centre de Recherche Industrielle du Québec (CRIQ), Québec, QC, G1P 4C7, Canada
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
With CO2 free emission and a gravimetric energy density higher than gasoline, diesel, biodiesel, and bioethanol, biohydrogen is a promising green renewable energy carrier. During fermentative hydrogen production, 60–70 % of the feedstock is converted to different by-products, dominated by organic acids. In the present investigation, a simple approach for value addition of hydrogen production liquid waste (HPLW) containing these compounds has been demonstrated. In soil, organic acids produced by phosphate solubilizing bacteria chelate the cations of insoluble inorganic phosphates (e.g., Ca3 (PO4)2) and make the phosphorus available to the plants. Organic acid-rich HPLW, therefore, has been evaluated as soil phosphate solubilizer. Application of HPLW as soil phosphate solubilizer was found to improve the phosphorus uptake of soybean plants by 2.18- to 2.74-folds. Additionally, 33–100 % increase in seed germination rate was also observed. Therefore, HPLW has the potential to be an alternative for phosphate solubilizing biofertilizers available in the market. Moreover, the strategy can be useful for phytoremediation of phosphorus-rich soil.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700