Transcriptome profiling shows gene regulation patterns in a flavonoid pathway in response to exogenous phenylalanine in Boesenbergia rotunda cell culture
详细信息    查看全文
  • 作者:Noor Diyana Md-Mustafa (25) (26)
    Norzulaani Khalid (25) (26)
    Huan Gao (30)
    Zhiyu Peng (29) (30)
    Mohd Firdaus Alimin (28)
    Noraini Bujang (28)
    Wong Sher Ming (25) (26)
    Yusmin Mohd-Yusuf (25) (27)
    Jennifer A Harikrishna (25) (26)
    Rofina Yasmin Othman (25) (26)

    25. Centre for Research in Biotechnology for Agriculture (CEBAR)
    ; University of Malaya ; 50603 ; Kuala Lumpur ; Malaysia
    26. Institute of Biological Sciences
    ; Faculty of Science ; University of Malaya ; 50603 ; Kuala Lumpur ; Malaysia
    30. BGI-Shenzhen
    ; Shenzhen ; China
    29. BGI-Guangzhou
    ; No.280 ; Waihuan East Road ; Guangzhou Higher Education Mega Center ; Guangzhou ; China
    28. Centre of Research for Computational Sciences & Informatics in Biology
    ; Bioindustry ; Environment ; Agriculture & Healthcare (CRYSTAL) ; University of Malaya ; 50603 ; Kuala Lumpur ; Malaysia
    27. Centre for Foundation Studies in Science
    ; University of Malaya ; 50603 ; Kuala Lumpur ; Malaysia
  • 关键词:Boesenbergia rotunda ; panduratin A ; anti ; dengue ; RNA ; seq ; differentially expressed genes (DEGs) analysis ; phenylpropanoid pathway
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:2,036 KB
  • 参考文献:1. Perry, LM, Metzger, J (1980) Medicinal Plants of East and Southeast Asia: Attributed Properties and Uses. MIT Press, Cambridge, MA
    2. Larsen, K (1996) Preliminary checklist of the Zingiberaceae of Thailand. Thai Forest Bull (Bot) 24: pp. 35-49
    3. Burkill, IH, Birtwistle, W, Foxworthy, FW, Scrivenor, JB, Watson, JG (1966) A dictionary of the Economic Products of the Malay Peninsula. Published on behalf of the governments of Malaysia and Singapore by the Ministry of Agriculture and cooperatives, Kuala Lumpur, Malaysia
    4. Saralamp, P, Chuakul, W, Temsiririrkkul, R, Clayton, T (1996) Medicinal Plants in Thailand. Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
    5. Ching, AYL, Tang, SW, Sukari, MA, Lian, GEC, Rahmani, M, Khalid, K (2007) Characterization of flavonoid derivatives from Boesenbergia rotunda (L.). Malays J Ann Sci 11: pp. 154-159
    6. Wijayakusuma, HMH (2001) Tumbuhan Berkhasiat Obat Indonesia: Rempah, Rimpang Dan Umbi. Milenia Populer, Jakarta, Indonesia
    7. Jaipetch, T, Kanghae, S, Pancharoen, O, Patrick, V, Reutrakul, V, Tuntiwachwuttikul, P, White, A (1982) Constituents of Boesenbergia pandurata (syn. Kaempferia pandurata): isolation, crystal structure and synthesis of (卤)-Boesenbergin A. Aust J Chem 35: pp. 351-361 CrossRef
    8. Mongkolsuk, S, Dean, FM (1964) Pinostrobin and alpinetin from Kaempferia pandurata. J Chem Soc. pp. 4654-4655
    9. Morikawa, T, Funakoshi, K, Ninomiya, K, Yasuda, D, Miyagawa, K, Matsuda, H, Yoshikawa, M (2008) Medicinal foodstuffs. XXXIV. Structures of new prenylchalcones and prenylflavanones with TNF-alpha and aminopeptidase N inhibitory activities from Boesenbergia rotunda. Chem Pharm Bull 56: pp. 956-962 CrossRef
    10. Trakoontivakorn, G, Nakahara, K, Shinmoto, H, Takenaka, M, Onishi-Kameyama, M, Ono, H, Yoshida, M, Nagata, T, Tsushida, T (2001) Structural analysis of a novel antimutagenic compound, 4-hydroxypanduratin A, and the antimutagenic activity of flavonoids in a Thai spice, fingerroot (Boesenbergia pandurata Schult.) against mutagenic heterocyclic amines. J Agric Food Chem 49: pp. 3046-3050 CrossRef
    11. Tuntiwachwuttikul, P, Pancharoen, O, Reutrakul, V, Byrne, L (1984) (1鈥睷S,2鈥睸R,6鈥睷S)-(2,6-Dihydroxy-4-methoxyphenyl)-[3鈥?methyl-2鈥?(3鈥?methylbut-2鈥?enyl)-6鈥?phenyl-cyclohex-3鈥?enyl] methanone (panduratin A)-a constituent of the red rhizomers of a variety of Boesenbergia pandurata. Aust J Chem 37: pp. 449-453 CrossRef
    12. Hwang, JK, Chung, JY, Baek, NI, Park, JH (2004) Isopanduratin A from Kaempferia pandurata as an active antibacterial agent against cariogenic Streptococcus mutans. Int J Antimicrob Agents 23: pp. 377-381 CrossRef
    13. Kiat, TS, Pippen, R, Yusof, R, Ibrahim, H, Khalid, N, Rahman, NA (2006) Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorg Med Chem Lett 16: pp. 3337-3340 CrossRef
    14. Yun, JM, Kwon, H, Mukhtar, H, Hwang, JK (2005) Induction of apoptosis by panduratin A isolated from Kaempferia pandurata in human colon cancer HT-29 cells. Planta Med 71: pp. 501-507 CrossRef
    15. Yun, JM, Kweon, MH, Kwon, H, Hwang, JK, Mukhtar, H (2006) Induction of apoptosis and cell cycle arrest by a chalcone panduratin A isolated from Kaempferia pandurata in androgen-independent human prostate cancer cells PC3 and DU145. Carcinogenesis 27: pp. 1454-1464 CrossRef
    16. Kirana, C, Jones, GP, Record, IR, McIntosh, GH (2007) Anticancer properties of panduratin A isolated from Boesenbergia pandurata (Zingiberaceae). J Nat Med 61: pp. 131-137 CrossRef
    17. Win, NN, Awale, S, Esumi, H, Tezuka, Y, Kadota, S (2007) Bioactive secondary metabolites from Boesenbergia pandurata of Myanmar and their preferential cytotoxicity against human pancreatic cancer PANC-1 cell line in nutrient-deprived medium. J Nat Prod 70: pp. 1582-1587 CrossRef
    18. Cheah, S-C, Appleton, DR, Lee, S-T, Lam, M-L, Hadi, AHA, Mustafa, MR (2011) Panduratin A inhibits the growth of A549 cells through induction of apoptosis and inhibition of NF-KappaB translocation. Molecules 16: pp. 2583-2598 CrossRef
    19. Yanti, OHI, Anggakusuma, , Hwang, JK (2009) Effects of panduratin A isolated from Kaempferia pandurata Roxb. on the expression of matrix metalloproteinase-9 by Porphyromonas gingivalis supernatant-induced KB cells. Biol Pharm Bull 32: pp. 110-115 CrossRef
    20. Yanti, A, Gwon, SH, Hwang, JK (2009) Kaempferia pandurata Roxb. inhibits Porphyromonas gingivalis supernatant-induced matrix metalloproteinase-9 expression via signal transduction in human oral epidermoid cells. J Ethnopharmacol 123: pp. 315-324 CrossRef
    21. Tewtrakul, S, Subhadhirasakul, S, Karalai, C, Ponglimanont, C, Cheenpracha, S (2009) Anti-inflammatory effects of compounds from Kaempferia parviflora and Boesenbergia pandurata. Food Chem 115: pp. 534-538 CrossRef
    22. Yun, JM, Kwon, H, Hwang, JK (2003) In vitro anti-inflammatory activity of panduratin A isolated from Kaempferia pandurata in RAW264. 7 cells. Planta Med 69: pp. 1102-1108 CrossRef
    23. Tuchinda, P, Reutrakul, V, Claeson, P, Pongprayoon, U, Sematong, T, Santisuk, T, Taylor, WC (2002) Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata. Phytochemistry 59: pp. 169-173 CrossRef
    24. Cheenpracha, S, Karalai, C, Ponglimanont, C, Subhadhirasakul, S, Tewtrakul, S (2006) Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata. Bioorg Med Chem 14: pp. 1710-1714 CrossRef
    25. Rukayadi, Y, Lee, KH, Hwang, JK (2009) Activity of panduratin A isolated from Kaempferia pandurata Roxb. against multi-species oral biofilms in vitro. J Oral Sci 51: pp. 87-95 CrossRef
    26. Rukayadi, Y, Lee, K, Han, S, Yong, D, Hwang, JK (2009) In vitro activities of panduratin A against clinical Staphylococcus strains. Antimicrob Agents Chemother 53: pp. 4529-4532 CrossRef
    27. Shim, JS, Kwon, YY, Han, YS, Hwang, JK (2008) Inhibitory effect of panduratin A on UV-induced activation of mitogen-activated protein kinases (MAPKs) in dermal fibroblast cells. Planta Med 74: pp. 1446-1450 CrossRef
    28. Shim, JS, Kwon, YY, Hwang, JK (2008) The effects of panduratin A isolated from Kaempferia pandurata on the expression of matrix metalloproteinase-1 and type-1 procollagen in human skin fibroblasts. Planta Med 74: pp. 239 CrossRef
    29. Sohn, JH, Han, KL, Lee, SH, Hwang, JK (2005) Protective effects of panduratin A against oxidative damage of tert-butylhydroperoxide in human HepG2 cells. Biol Pharm Bull 28: pp. 1083-1086 CrossRef
    30. Shindo, K, Kato, M, Kinoshita, A, Kobayashi, A, Koike, Y (2006) Analysis of antioxidant activities contained in the Boesenbergia pandurata Schult. rhizome. Biosci Biotechnol Biochem 70: pp. 2281-2284 CrossRef
    31. Kim, D-Y, Kim, M-S, Sa, B-K, Kim, M-B, Hwang, J-K (2012) Boesenbergia pandurata attenuates diet-induced obesity by activating AMP-activated protein kinase and regulating lipid metabolism. Int J Mol Sci 13: pp. 994-1005 CrossRef
    Dengue and Severe Dengue. Factsheet No11. World Health Organization (WHO), Geneva, Switzwerland
    Dengue Vaccine Research. World Health Organization (WHO), Geneva, Switzwerland
    32. Chee, CF, Abdullah, I, Buckle, MJC, Rahman, NA (2010) An efficient synthesis of (卤)-panduratin A and (卤)-isopanduratin A, inhibitors of dengue-2 viral activity. Tetrahedron Lett 51: pp. 495-498 CrossRef
    33. Tan, EC, Karsani, SA, Foo, GT, Wong, SM, Abdul Rahman, N, Khalid, N, Othman, S, Yusof, R (2012) Proteomic analysis of cell suspension cultures of Boesenbergia rotunda induced by phenylalanine: identification of proteins involved in flavonoid and phenylpropanoid biosynthesis pathways. Plant Cell Tiss Org 111: pp. 219-229 CrossRef
    34. Herrmann, KM, Weaver, LM (1999) The shikimate pathway. Annu Rev Plant Biol 50: pp. 473-503 CrossRef
    35. Al-Obaidi, JR, Mohd-Yusuf, Y, Chin-Chong, T, Mhd-Noh, N, Othman, RY (2010) Identification of a partial oil palm polygalacturonase-inhibiting protein (EgPGIP) gene and its expression during basal stem rot infection caused by Ganoderma boninense. Afr J Biotechnol 9: pp. 7788-7797
    36. Li, R, Yu, C, Li, Y, Lam, TW, Yiu, SM, Kristiansen, K, Wang, J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25: pp. 1966-1967 CrossRef
    37. Iseli, C, Jongeneel, CV, Bucher, P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 1999: pp. 138-148
    38. Austin, MB, Noel, JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20: pp. 79-110 CrossRef
    39. Molina, C, Zaman-Allah, M, Khan, F, Fatnassi, N, Horres, R, Rotter, B, Steinhauer, D, Amenc, L, Drevon, JJ, Winter, P (2011) The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. BMC Plant Biol 11: pp. 31 CrossRef
    40. Sun, C, Li, Y, Wu, Q, Luo, H, Sun, Y, Song, J, Lui, EMK, Chen, S (2010) De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics 11: pp. 262 CrossRef
    41. Luo, H, Sun, C, Sun, Y, Wu, Q, Li, Y, Song, J, Niu, Y, Cheng, X, Xu, H, Li, C (2011) Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics 12: pp. S5 CrossRef
    42. Sun, Y, Luo, H, Li, Y, Sun, C, Song, J, Niu, Y, Zhu, Y, Dong, L, Lv, A, Tramontano, E (2011) Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport. BMC Genomics 12: pp. 533 CrossRef
    43. Tang, Q, Ma, X, Mo, C, Wilson, IW, Song, C, Zhao, H, Yang, Y, Fu, W, Qiu, D (2011) An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics 12: pp. 343 CrossRef
    44. Annadurai, RS, Neethiraj, R, Jayakumar, V, Damodaran, AC, Rao, SN, Katta, MA, Gopinathan, S, Sarma, SP, Senthilkumar, V, Niranjan, V (2013) De novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids. PLoS One 8: pp. e56217 CrossRef
    45. Campbell, M, Hahn, FM, Poulter, CD, Leustek, T (1998) Analysis of the isopentenyl diphosphate isomerase gene family from Arabidopsis thaliana. Plant Mol Biol 36: pp. 323-328 CrossRef
    46. Avelange-Macherel, M-H, Joyard, J (1998) Cloning and functional expression of AtCOQ3, the Arabidopsis homologue of the yeast COQ3 gene, encoding a methyltransferase from plant mitochondria involved in ubiquinone biosynthesis. Plant J 14: pp. 203-213 CrossRef
    47. Bolognese, CP, McGraw, P (2000) The isolation and characterization in yeast of a gene for arabidopsis S-adenosylmethionine: phospho-ethanolamine N-methyltransferase. Plant Physiol 410: pp. 455-3875
    48. Fr茅mont, N, Riefler, M, Stolz, A, Schm眉lling, T (2013) The Arabidopsis TUMOR PRONE5 Gene Encodes an acetylornithine aminotransferase required for arginine biosynthesis and root meristem maintenance in blue light. Plant Physiol 161: pp. 1127-1140 CrossRef
    49. Zhang, X-N, Han, Z-H, Yin, L-L, Kong, J, Xu, X-F, Zhang, X-Z, Wang, Y (2013) Heterologous functional analysis of the Malus xiaojinensis MxIRT1 gene and the His-box motif by expression in yeast. Mol Biol Rep 40: pp. 1499-1504 CrossRef
    50. Fett-Neto, AG, Melanson, SJ, Sakata, K, DiCosmo, F (1993) Improved growth and taxol yield in developing calli of Taxus cuspidata by medium composition modification. Nat Biotechnol 11: pp. 731-734 CrossRef
    51. Fett-Neto, AG, Melanson, SJ, Nicholson, SA, Pennington, JJ, DiCosmo, F (1994) Improved taxol yield by aromatic carboxylic acid and amino acid feeding to cell cultures of Taxus cuspidata. Biotechnol Bioeng 44: pp. 967-971 CrossRef
    52. Vom Endt, D, Kijne, JW, Memelink, J (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators?. Phytochemistry 61: pp. 107-114 CrossRef
    53. Broun, P (2004) Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol 7: pp. 202-209 CrossRef
    54. Du, H, Zhang, L, Liu, L, Tang, XF, Yang, WJ, Wu, YM, Huang, YB, Tang, YX (2009) Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry (Mosc) 74: pp. 1-11 CrossRef
    55. Mizoi, J, Shinozaki, K, Yamaguchi-Shinozaki, K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819: pp. 86-96 CrossRef
    56. 脺lker, B, Somssich, IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7: pp. 491-498 CrossRef
    57. Jakoby, M, Weisshaar, B, Dr枚ge-Laser, W, Vicente-Carbajosa, J, Tiedemann, J, Kroj, T, Parcy, F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7: pp. 106-111 CrossRef
    58. Hirsch, S, Oldroyd, GED (2009) GRAS-domain transcription factors that regulate plant development. Plant Signal Behav 4: pp. 698-700 CrossRef
    59. Olsen, AN, Ernst, HA, Leggio, LL, Skriver, K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10: pp. 79-87 CrossRef
    60. Hiraga, S, Sasaki, K, Ito, H, Ohashi, Y, Matsui, H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42: pp. 462-468 CrossRef
    61. Marjamaa, K, Kukkola, EM, Fagerstedt, KV (2009) The role of xylem class III peroxidases in lignification. J Exp Bot 60: pp. 367-376 CrossRef
    62. Kim, YH, Kim, CY, Song, WK, Park, DS, Kwon, SY, Lee, HS, Bang, JW, Kwak, SS (2008) Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227: pp. 867-881 CrossRef
    63. Hiraga, S, Yamamoto, K, Ito, H, Sasaki, K, Matsui, H, Honma, M, Nagamura, Y, Sasaki, T, Ohashi, Y (2000) Diverse expression profiles of 21 rice peroxidase genes. FEBS Lett 471: pp. 245-250 CrossRef
    64. Lattanzio, V, Cardinali, A, Ruta, C, Fortunato, IM, Lattanzio, VM, Linsalata, V, Cicco, N (2009) Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Environ Exp Bot 65: pp. 54-62 CrossRef
    65. Herms, DA, Mattson, WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67: pp. 283-335 CrossRef
    66. Lerdau, M, Coley, PD (2002) Benefits of the carbon-nutrient balance hypothesis. Oikos 98: pp. 534-536 CrossRef
    67. Jones, CG, Hartley, SE (1999) A protein competition model of phenolic allocation. Oikos 86: pp. 27-44 CrossRef
    68. Jaipetch, T, Reutrakul, V, Tuntiwachwuttikul, P, Santisuk, T (1983) Flavonoids in the black rhizomes of Boesenbergia panduta. Phytochemistry 22: pp. 625-626 CrossRef
    69. Herunsalee, A, Pancharoen, O, Tuntiwachwuttikul, P (1987) Further studies of flavonoids of the black rhizomes Boesenbergia pandurata. J Sci Soc Thailand 13: pp. 119-122 CrossRef
    70. Bowsher, C, Steer, MW, Tobin, AK (2008) Plant biochemistry. Garland Science, NY, USA
    71. Lois, R, Dietrich, A, Hahlbrock, K, Schulz, W (1989) A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements. EMBO J 8: pp. 1641-1648
    72. Wanner, LA, Li, G, Ware, D, Somssich, IE, Davis, KR (1995) The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol 27: pp. 327-338 CrossRef
    73. Fukasawa-Akada, T, Kung, SD, Watson, J (1996) Phenylalanine ammonia-lyase gene structure, expression, and evolution in Nicotiana. Plant Mol Biol 30: pp. 711-722 CrossRef
    74. Cramer, C, Edwards, K, Dron, M, Liang, X, Dildine, S, Bolwell, GP, Dixon, R, Lamb, C, Schuch, W (1989) Phenylalanine ammonia-lyase gene organization and structure. Plant Mol Biol 12: pp. 367-383 CrossRef
    75. Joos, HJ, Hahlbrock, K (2005) Phenylalanine ammonia-lyase in potato (Solanum tuberosum L.). Eur J Biochem 204: pp. 621-629 CrossRef
    76. Ehlting, J, B眉ttner, D, Wang, Q, Douglas, CJ, Somssich, IE, Kombrink, E (2002) Three 4-coumarate: coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J 19: pp. 9-20 CrossRef
    77. Gui, J, Shen, J, Li, L (2011) Functional characterization of evolutionarily divergent 4-coumarate: Coenzyme A ligases in rice. Plant Physiol 157: pp. 574-586 CrossRef
    78. Ferrer, JL, Jez, JM, Bowman, ME, Dixon, RA, Noel, JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6: pp. 775 CrossRef
    79. Yamazaki, Y, Suh, DY, Sitthithaworn, W, Ishiguro, K, Kobayashi, Y, Shibuya, M, Ebizuka, Y, Sankawa, U (2001) Diverse chalcone synthase superfamily enzymes from the most primitive vascular plant, Psilotum nudum. Planta 214: pp. 75-84 CrossRef
    80. Wingender, R, R枚hrig, H, H枚ricke, C, Wing, D, Schell, J (1989) Differential regulation of soybean chalcone synthase genes in plant defence, symbiosis and upon environmental stimuli. Mol Gen Genet 218: pp. 315-322 CrossRef
    81. Murashige, T, Skoog, F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15: pp. 473-497 CrossRef
    82. Li, R, Zhu, H, Ruan, J, Qian, W, Fang, X, Shi, Z, Li, Y, Li, S, Shan, G, Kristiansen, K (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20: pp. 265-272 CrossRef
    83. Pertea, G, Huang, X, Liang, F, Antonescu, V, Sultana, R, Karamycheva, S, Lee, Y, White, J, Cheung, F, Parvizi, B (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19: pp. 651-652 CrossRef
    84. Conesa, A, G枚tz, S, Garc铆a-G贸mez, JM, Terol, J, Tal贸n, M, Robles, M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: pp. 3674-3676 CrossRef
    85. Ye, J, Fang, L, Zheng, H, Zhang, Y, Chen, J, Zhang, Z, Wang, J, Li, S, Li, R, Bolund, L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34: pp. W293-W297 CrossRef
    86. Mortazavi, A, Williams, BA, McCue, K, Schaeffer, L, Wold, B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: pp. 621-628 CrossRef
    87. Audic, S, Claverie, J-M (1997) The significance of digital gene expression profiles. Genome Res 7: pp. 986-995
    88. P茅rez-Rodr铆guez, P, Ria帽o-Pach贸n, DM, Corr锚a, LGG, Rensing, SA, Kersten, B, Mueller-Roeber, B (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38: pp. D822-D827 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Panduratin A extracted from Boesenbergia rotunda is a flavonoid reported to possess a range of medicinal indications which include anti-dengue, anti-HIV, anti-cancer, antioxidant and anti-inflammatory properties. Boesenbergia rotunda is a plant from the Zingiberaceae family commonly used as a food ingredient and traditional medicine in Southeast Asia and China. Reports on the health benefits of secondary metabolites extracted from Boesenbergia rotunda over the last few years has resulted in rising demands for panduratin A. However large scale extraction has been hindered by the naturally low abundance of the compound and limited knowledge of its biosynthetic pathway. Results Transcriptome sequencing and digital gene expression (DGE) analysis of native and phenylalanine treated Boesenbergia rotunda cell suspension cultures were carried out to elucidate the key genes differentially expressed in the panduratin A biosynthetic pathway. Based on experiments that show increase in panduratin A production after 14 days post treatment with exogenous phenylalanine, an aromatic amino acid derived from the shikimic acid pathway, total RNA of untreated and 14 days post-phenylalanine treated cell suspension cultures were extracted and sequenced using next generation sequencing technology employing an Illumina-Solexa platform. The transcriptome data generated 101, 043 unigenes with 50, 932 (50.41%) successfully annotated in the public protein databases; including 49.93% (50, 447) in the non-redundant (NR) database, 34.63% (34, 989) in Swiss-Prot, 24,07% (24, 316) in Kyoto Encyclopedia of Genes and Genomes (KEGG) and 16.26% (16, 426) in Clusters of Orthologous Groups (COG). Through DGE analysis, we found that 14, 644 unigenes were up-regulated and 14, 379 unigenes down-regulated in response to exogenous phenylalanine treatment. In the phenylpropanoid pathway leading to the proposed panduratin A production, 2 up-regulated phenylalanine ammonia-lyase (PAL), 3 up-regulated 4-coumaroyl:coenzyme A ligase (4CL) and 1 up-regulated chalcone synthase (CHS) were found. Conclusions This is the first report of Boesenbergia rotunda de novo transcriptome data that could serve as a reference for gene or enzyme functional studies in the Zingiberaceae family. Although enzymes that are directly involved in the panduratin A biosynthetic pathway were not completely elucidated, the data provides an overall picture of gene regulation patterns leading to panduratin A production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700