Metabolic engineering of microorganisms for the production of L-arginine and its derivatives
详细信息    查看全文
  • 作者:Jae Ho Shin (1)
    Sang Yup Lee (1) (2) (3)

    1. Metabolic and Biomolecular Engineering National Research Laboratory
    ; Department of Chemical and Biomolecular Engineering (BK21 Plus Program) ; Center for Systems and Synthetic Biotechnology ; Institute for the BioCentury ; KAIST ; 291 Daehak-ro ; Yuseong-gu ; Daejeon ; 305-701 ; Republic of Korea
    2. BioProcess Engineering Research Center
    ; KAIST ; Daejeon ; 305-701 ; Republic of Korea
    3. BioInformatics Research Center
    ; KAIST ; Daejeon ; 305-701 ; Republic of Korea
  • 关键词:Metabolic engineering ; L ; Arginine ; L ; Ornithine ; Putrescine ; Biopolymers ; Polyaspartate
  • 刊名:Microbial Cell Factories
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:1,769 KB
  • 参考文献:1. Albaroth, J, Muller, OA, Schopohl, J, Vonwerder, K (1988) Arginine stimulates growth-hormone secretion by suppressing endogenous somatostatin secretion. J Clin Endocrinol Metab 67: pp. 1186-1189
    2. Davis, SL (1972) Plasma levels of prolactin, growth-hormone, and insulin in sheep following infusion of arginine, leucine and phenylalanine. Endocrinology 91: pp. 549-555
    3. Thams, P, Capito, K (1999) L-Arginine stimulation of glucose-induced insulin secretion through membrane depolarization and independent of nitric oxide. Eur J Endocrinol 140: pp. 87-93
    4. Palmer, JP, Benson, JW, Walter, RM, Ensinck, JW (1976) Arginine-stimulated acute phase of insulin and glucagon-secretion in diabetic subjects. J Clin Invest 58: pp. 565-570
    5. Jobgen, WJ, Meininger, CJ, Jobgen, SC, Li, P, Lee, MJ, Smith, SB, Spencer, TE, Fried, SK, Wu, GY (2009) Dietary L-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139: pp. 230-237
    6. Barbul, A, Lazarou, SA, Efron, DT, Wasserkrug, HL, Efron, G (1990) Arginine enhances wound-healing and lymphocyte immune-responses in humans. Surgery 108: pp. 331-337
    7. Rogers, NE, Ignarro, LJ (1992) Constitutive nitric-oxide synthase from cerebellum is reversibly inhibited by nitric-oxide formed from L-arginine. Biochem Biophys Res Commun 189: pp. 242-249
    8. Ignarro, LJ, Cirino, G, Casini, A, Napoli, C (1999) Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol 34: pp. 879-886
    9. Park, SH, Kim, HU, Kim, TY, Park, JS, Kim, SS, Lee, SY (2014) Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat Commun 5: pp. 4618
    10. Chen, N, Du, J, Liu, H, Xu, QY (2009) Elementary mode analysis and metabolic flux analysis of L-glutamate biosynthesis by Corynebacterium glutamicum. Ann Microbiol 59: pp. 317-322
    11. Becker, J, Zelder, O, Hafner, S, Schroder, H, Wittmann, C (2011) From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13: pp. 159-168
    12. Leuchtenberger, W, Huthmacher, K, Drauz, K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69: pp. 1-8
    13. Park, JH, Lee, KH, Kim, TY, Lee, SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104: pp. 7797-7802
    14. Lee, KH, Park, JH, Kim, TY, Kim, HU, Lee, SY (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3: pp. 149
    15. Jojima, T, Fujii, M, Mori, E, Inui, M, Yukawa, H (2010) Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Appl Microbiol Biotechnol 87: pp. 159-165
    16. Becker, J, Wittmann, C (2012) Bio-based production of chemicals, materials and fuels - Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23: pp. 631-640
    17. Becker, J, Wittmann, C (2012) Systems and synthetic metabolic engineering for amino acid production - the heartbeat of industrial strain development. Curr Opin Biotechnol 23: pp. 718-726
    18. Kisumi, M, Kato, J, Sugiura, M, Chibata, I (1971) Production of L-arginine by arginine hydroxamate-resistant mutants of Bacillus subtilis. Appl Microbiol 22: pp. 987-991
    19. Udaka, S, Kinoshita, S (1958) Studies on L-ornithine fermentation I. The biosynthetic pathway of L-ornithine in Micrococcus glutamicum. J Gen Appl Microbiol 4: pp. 272-282
    20. Lee, J, Jang, YS, Choi, SJ, Im, JA, Song, H, Cho, JH, Seung, DY, Papoutsakis, ET, Bennett, GN, Lee, SY (2012) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl Environ Microbiol 78: pp. 1416-1423
    21. Jang, YS, Malaviya, A, Lee, J, Im, JA, Lee, SY, Lee, J, Eom, MH, Cho, JH, Seung, DY (2013) Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture. Biotechnol Prog 29: pp. 1083-1088
    22. Paddon, CJ, Westfall, PJ, Pitera, DJ, Benjamin, K, Fisher, K, McPhee, D, Leavell, MD, Tai, A, Main, A, Eng, D, Polichuk, DR, Teoh, KH, Reed, DW, Treynor, T, Lenihan, J, Fleck, M, Bajad, S, Dang, G, Dengrove, D, Diola, D, Dorin, G, Ellens, KW, Fickes, S, Galazzo, J, Gaucher, SP, Geistlinger, T, Henry, R, Hepp, M, Horning, T, Iqbal, T (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496: pp. 528-532
    23. Jung, YK, Kim, TY, Park, SJ, Lee, SY (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105: pp. 161-171
    24. Park, SJ, Kim, EY, Noh, W, Park, HM, Oh, YH, Lee, SH, Song, BK, Jegal, J, Lee, SY (2013) Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab Eng 16: pp. 42-47
    25. Jang, YS, Kim, B, Shin, JH, Choi, YJ, Choi, S, Song, CW, Lee, J, Park, HG, Lee, SY (2012) Bio-based production of C2-C6 platform chemicals. Biotechnol Bioeng 109: pp. 2437-2459
    26. Yim, H, Haselbeck, R, Niu, W, Pujol-Baxley, C, Burgard, A, Boldt, J, Khandurina, J, Trawick, JD, Osterhout, RE, Stephen, R, Estadilla, J, Teisan, S, Schreyer, HB, Andrae, S, Yang, TH, Lee, SY, Burk, MJ, Dien, S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7: pp. 445-452
    27. Xia, XX, Qian, ZG, Ki, CS, Park, YH, Kaplan, DL, Lee, SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci U S A 107: pp. 14059-14063
    28. Qian, ZG, Xia, XX, Lee, SY (2009) Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol Bioeng 104: pp. 651-662
    29. Qian, ZG, Xia, XX, Lee, SY (2011) Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng 108: pp. 93-103
    30. Na, D, Yoo, SM, Chung, H, Park, H, Park, JH, Lee, SY (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31: pp. 170-174
    31. Meneguello, MO, Mendonca, JR, Lancha, AH, Costa Rosa, LF (2003) Effect of arginine, ornithine and citrulline supplementation upon performance and metabolism of trained rats. Cell Biochem Funct 21: pp. 85-91
    32. Kalinowski, J, Bathe, B, Bartels, D, Bischoff, N, Bott, M, Burkovski, A, Dusch, N, Eggeling, L, Eikmanns, BJ, Gaigalat, L, Goesmann, A, Hartmann, M, Huthmacher, K, Kramer, R, Linke, B, McHardy, AC, Meyer, F, Mockel, B, Pfefferle, W, Puhler, A, Rey, DA, Ruckert, C, Rupp, O, Sahm, H, Wendisch, VF, Wiegrabe, I, Tauch, A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104: pp. 5-25
    33. Lu, CD (2006) Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl Microbiol Biotechnol 70: pp. 261-272
    34. Dou, WF, Xu, MJ, Cai, DM, Zhang, XM, Rao, ZM, Xu, ZH (2011) Improvement of L-arginine production by overexpression of a bifunctional ornithine acetyltransferase in Corynebacterium crenatum. Appl Biochem Biotechnol 165: pp. 845-855
    35. Glansdorff, N, Xu, Y Microbial Arginine Biosynthesis: Pathway, Regulation and Industrial Production. In: Wendisch, V eds. (2007) Amino Acid Biosynthesis - Pathways, Regulation and Metabolic Engineering. Springer, Heidelberg, Germany, pp. 219-257
    36. Vyas, S, Maas, WK (1963) Feedback inhibition of acetylglutamate synthetase by arginine in Escherichia coli. Arch Biochem Biophys 100: pp. 542-546
    37. Sakanyan, V, Charlier, D, Legrain, C, Kochikyan, A, Mett, I, Pierard, A, Glansdorff, N (1993) Primary structure, partial purification and regulation of key enzymes of the acetyl cycle of arginine biosynthesis in Bacillus stearothermophilus: dual function of ornithine acetyltransferase. J Gen Microbiol 139: pp. 393-402
    38. Morizono, H, Cabrera-Luque, J, Shi, DS, Gallegos, R, Yamaguchi, S, Yu, XL, Allewell, NM, Malamy, MH, Tuchman, M (2006) Acetylornithine transcarbamylase: a novel enzyme in arginine biosynthesis. J Bacteriol 188: pp. 2974-2982
    39. Haas, D, Leisinge, T, Kurer, V (1972) N-acetylglutamate synthetase of Pseudomonas aeruginosa - an assay in vitro and feedback inhibition by arginine. Eur J Biochem 31: pp. 290-295
    40. Picard, FJ, Dillon, JR (1989) Cloning and organization of seven arginine biosynthesis genes from Neisseria gonorrhoeae. J Bacteriol 171: pp. 1644-1651
    41. Harris, BZ, Singer, M (1998) Identification and characterization of the Myxococcus xanthus argE gene. J Bacteriol 180: pp. 6412-6414
    42. Marc, F, Weigel, P, Legrain, C, Almeras, Y, Santrot, M, Glansdorff, N, Sakanyan, V (2000) Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms. Eur J Biochem 267: pp. 5217-5226
    43. Sakanyan, V, Kochikyan, A, Mett, I, Legrain, C, Charlier, D, Pierard, A, Glansdorff, N (1992) A reexamination of the pathway for ornithine biosynthesis in a Thermophilic and two mesophilic Bacillus Species. J Gen Microbiol 138: pp. 125-130
    44. Udaka, S (1966) Pathway-specific pattern of control of arginine biosynthesis in bacteria. J Bacteriol 91: pp. 617-621
    45. Martin, PR, Mulks, MH (1992) Sequence analysis and complementation studies of the argJ gene encoding ornithine acetyltransferase from Neisseria gonorrhoeae. J Bacteriol 174: pp. 2694-2701
    46. Hindle, Z, Callis, R, Dowden, S, Rudd, BA, Baumberg, S (1994) Cloning and expression in Escherichia coli of a Streptomyces coelicolor A3(2) argCJB gene cluster. Microbiology 140: pp. 311-320
    47. Ikeda, M, Mitsuhashi, S, Tanaka, K, Hayashi, M (2009) Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Appl Environ Microbiol 75: pp. 1635-1641
    48. Xu, Y, Labedan, B, Glansdorff, N (2007) Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms. Microbiol Mol Biol Rev 71: pp. 36-47
    49. Yim, SH, Jung, S, Lee, SK, Cheon, CI, Song, E, Lee, SS, Shin, J, Lee, MS (2011) Purification and characterization of an arginine regulatory protein, ArgR, in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 38: pp. 1911-1920
    50. Schneider, J, Wendisch, VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88: pp. 859-868
    51. Schneider, J, Eberhardt, D, Wendisch, VF (2012) Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol 95: pp. 169-178
    52. Sakanyan, V, Petrosyan, P, Lecocq, M, Boyen, A, Legrain, C, Demarez, M, Hallet, JN, Glansdorff, N (1996) Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiology 142: pp. 99-108
    53. Petri, K, Walter, F, Persicke, M, Ruckert, C, Kalinowski, J (2013) A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum. BMC Genomics 14: pp. 713
    54. Hwang, GH, Cho, JY (2010) Identification of a suppressor gene for the arginine-auxotrophic argJ mutation in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 37: pp. 1131-1136
    55. Xu, Y, Glansdorff, N, Labedan, B (2006) Bioinformatic analysis of an unusual gene-enzyme relationship in the arginine biosynthetic pathway among marine gamma proteobacteria: implications concerning the formation of N-acetylated intermediates in prokaryotes. BMC Genomics 7: pp. 4
    56. Errey, JC, Blanchard, JS (2005) Functional characterization of a novel ArgA from Mycobacterium tuberculosis. J Bacteriol 187: pp. 3039-3044
    57. Shi, D, Sagar, V, Jin, Z, Yu, X, Caldovic, L, Morizono, H, Allewell, NM, Tuchman, M (2008) The crystal structure of N-acetyl-L-glutamate synthase from Neisseria gonorrhoeae provides insights into mechanisms of catalysis and regulation. J Biol Chem 283: pp. 7176-7184
    58. Cunin, R, Glansdorff, N, Pierard, A, Stalon, V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50: pp. 314-352
    59. Xu, MJ, Rao, ZM, Dou, WF, Jin, J, Xu, ZH (2012) Site-directed mutagenesis studies on the L-arginine-binding sites of feedback inhibition in N-Acetyl-l-glutamate Kinase (NAGK) from Corynebacterium glutamicum. Curr Microbiol 64: pp. 164-172
    60. Ramon-Maiques, S, Fernandez-Murga, ML, Gil-Ortiz, F, Vagin, A, Fita, I, Rubio, V (2006) Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa. J Mol Biol 356: pp. 695-713
    61. Theron, G, Reid, SJ (2011) ArgR-promoter interactions in Corynebacterium glutamicum arginine biosynthesis. Biotechnol Appl Biochem 58: pp. 119-127
    62. Lee, SY, Cho, JY, Lee, HJ, Kim, YH, Min, J (2010) Enhancement of ornithine production in proline-supplemented Corynebacterium glutamicum by ornithine cyclodeaminase. J Microbiol Biotechnol 20: pp. 127-131
    63. Hanssler, E, Muller, T, Jessberger, N, Volzke, A, Plassmeier, J, Kalinowski, J, Kramer, R, Burkovski, A (2007) FarR, a putative regulator of amino acid metabolism in Corynebacterium glutamicum. Appl Microbiol Biotechnol 76: pp. 625-632
    64. Lee, SY, Park, JM, Lee, JH, Chang, ST, Park, JS, Kim, YH, Min, J (2011) Interaction of transcriptional repressor ArgR with transcriptional regulator FarR at the argB promoter region in Corynebacterium glutamicum. Appl Environ Microbiol 77: pp. 711-718
    65. Lee, SY, Shin, HS, Park, JS, Kim, YH, Min, J (2010) Proline reduces the binding of transcriptional regulator ArgR to upstream of argB in Corynebacterium glutamicum. Appl Microbiol Biotechnol 86: pp. 235-242
    66. Savchenko, A, Weigel, P, Dimova, D, Lecocq, M, Sakanyan, V (1998) The Bacillus stearothermophilus argCJBD operon harbours a strong promoter as evaluated in Escherichia coli cells. Gene 212: pp. 167-177
    67. Piette, J, Cunin, R, Boyen, A, Charlier, D, Crabeel, M, Vanvliet, F, Glansdorff, N, Squires, C, Squires, CL (1982) The regulatory region of the divergent argECBH operon in Escherichia coli K-12. Nucleic Acids Res 10: pp. 8031-8048
    68. Charlier, D, Roovers, M, Vanvliet, F, Boyen, A, Cunin, R, Nakamura, Y, Glansdorff, N, Pierard, A (1992) Arginine regulon of Escherichia coli K-12: A study of repressor operator interactions and of in vitro binding affinities versus in vivo repression. J Mol Biol 226: pp. 367-386
    69. Bringel, F, Frey, L, Boivin, S, Hubert, JC (1997) Arginine biosynthesis and regulation in Lactobacillus plantarum: the carA gene and the argCJBDF cluster are divergently transcribed. J Bacteriol 179: pp. 2697-2706
    70. RodriguezGarcia, A, Ludovice, M, Martin, JF, Liras, P (1997) Arginine boxes and the argR gene in Streptomyces clavuligerus: evidence for a clear regulation of the arginine pathway. Mol Microbiol 25: pp. 219-228
    71. Walker, JB (1955) Canavanine and homoarginine as antimetabolites of arginine and lysine in yeast and algae. J Biol Chem 212: pp. 207-215
    72. Nakayama, K, Yoshida, H (1972) Fermentative production of L-arginine. Agric Biol Chem 36: pp. 1675-1684
    73. Yoshida, H, Araki, K, Nakayama, K (1981) Fermentative production of L-arginine. 5. L-Arginine production by arginine analog-resistant mutants of microorganisms. Agric Biol Chem 45: pp. 959-963
    74. Kato, J, Kisumi, M, Takagi, T, Chibata, I (1977) Increase in arginine and citrulline production by 6-azauracil-resistant mutants of Bacillus subtilis. Appl Environ Microbiol 34: pp. 689-694
    75. Kubota, K, Onoda, T, Kamijo, H, Yoshinag, F, Okumura, S (1973) Microbial production of L-arginine. 1. Production of L-arginine by mutants of glutamic acid-producing bacteria. J Gen Appl Microbiol 19: pp. 339-352
    76. Xu, H, Dou, WF, Xu, HY, Zhang, XM, Rao, ZM, Shi, ZP, Xu, ZH (2009) A two-stage oxygen supply strategy for enhanced L-arginine production by Corynebacterium crenatum based on metabolic fluxes analysis. Biochem Eng J 43: pp. 41-51
    77. Xu, MJ, Rao, ZM, Xu, H, Lan, CY, Dou, WF, Zhang, XM, Xu, HY, Jin, JA, Xu, ZH (2011) Enhanced production of L-arginine by expression of Vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum. Appl Biochem Biotechnol 163: pp. 707-719
    78. Xu, MJ, Rao, ZM, Yang, J, Xia, HF, Dou, WF, Jin, J, Xu, ZH (2012) Heterologous and homologous expression of the arginine biosynthetic argC鈥墌鈥塇 cluster from Corynebacterium crenatum for improvement of L-arginine production. J Ind Microbiol Biotechnol 39: pp. 495-502
    79. Choi, DK, Ryu, WS, Choi, CY, Park, YH (1996) Production of L-ornithine by arginine auxotrophic mutants of Brevibacterium ketoglutamicum in dual substrate-limited continuous culture. J Ferment Bioeng 81: pp. 216-219
    80. Hwang, JH, Hwang, GH, Cho, JY (2008) Effect of increased glutamate availability on L-ornithine production in Corynebacterium glutamicum. J Microbiol Biotechnol 18: pp. 704-710
    81. Schneider, J, Niermann, K, Wendisch, VF (2011) Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154: pp. 191-198
    82. Lu, DM, Liu, JZ, Mao, ZW (2012) Engineering of Corynebacterium glutamicum to enhance L-ornithine production by gene knockout and comparative proteomic analysis. Chin J Chem Eng 20: pp. 731-739
    83. Hwang, GH, Cho, JY (2012) Implication of gluconate kinase activity in L-ornithine biosynthesis in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 39: pp. 1869-1874
    84. Jiang, LY, Zhang, YY, Li, Z, Liu, JZ (2013) Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. J Ind Microbiol Biotechnol 40: pp. 1143-1151
    85. Jiang, LY, Chen, SG, Zhang, YY, Liu, JZ (2013) Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. BMC Biotechnol 13: pp. 47
    86. Kim SY, Lee J, Lee SY: Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. / Biotechnol Bioeng. in press.
    87. Meiswinkel, T, Rittmann, D, Lindner, SN, Wendisch, VF (2013) Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol 145: pp. 254-258
    88. Aboulmagd, E, Voss, I, Oppermann-Sanio, FB, Steinbuchel, A (2001) Heterologous expression of cyanophycin synthetase and cyanophycin synthesis in the industrial relevant bacteria Corynebacterium glutamicum and Ralstonia eutropha and in Pseudomonas putida. Biomacromolecules 2: pp. 1338-1342
    89. Frey, KM, Oppermann-Sanio, FB, Schmidt, H, Steinbuchel, A (2002) Technical-scale production of cyanophycin with recombinant strains of Escherichia coli. Appl Environ Microbiol 68: pp. 3377-3384
    90. Voss, I, Diniz, SC, Aboulmagd, E, Steinbuchel, A (2004) Identification of the Anabaena sp strain PCC7120 cyanophycin synthetase as suitable enzyme for production of cyanophycin in gram-negative bacteria like Pseudomonas putida and Ralstonia eutropha. Biomacromolecules 5: pp. 1588-1595
    91. Elbahloul, Y, Krehenbrink, M, Reichelt, R, Steinbuchel, A (2005) Physiological conditions conducive to high cyanophycin content in biomass of Acinetobacter calcoaceticus strain ADP1. Appl Environ Microbiol 71: pp. 858-866
    92. Voss, I, Steinbuchel, A (2006) Application of a KDPG-aldolase gene-dependent addiction system for enhanced production of cyanophycin in Ralstonia eutropha strain H16. Metab Eng 8: pp. 66-78
    93. Kroll, J, Klinter, S, Steinbuchel, A (2011) A novel plasmid addiction system for large-scale production of cyanophycin in Escherichia coli using mineral salts medium. Appl Microbiol Biotechnol 89: pp. 593-604
    94. Lin, KC, Elbahloul, Y, Steinbuchel, A (2012) Physiological conditions conducive to high cell density and high cyanophycin content in Ralstonia eutropha strain H16 possessing a KDPG aldolase gene-dependent addiction system. Appl Microbiol Biotechnol 93: pp. 1885-1894
    95. Kind, S, Jeong, WK, Schroder, H, Zelder, O, Wittmann, C (2010) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76: pp. 5175-5180
    96. Kroll, J, Klinter, S, Schneider, C, Voss, I, Steinbuchel, A (2010) Plasmid addiction systems: perspectives and applications in biotechnology. Microb Biotechnol 3: pp. 634-657
    97. Borzi, A (1886) Malpighia. Le comunicazioni intracellulari delle Nostochinee. pp. 28-74
    98. Schwamborn, M (1998) Chemical synthesis of polyaspartates: a biodegradable alternative to currently used polycarboxylate homo- and copolymers. Polym Degrad Stab 59: pp. 39-45
    99. Zotz, RJ, Schenk, S, Kuhn, A, Schlunken, S, Krone, V, Bruns, W, Genth, S, Schuler, G (2001) Safety and efficacy of LK565 - a new polymer ultrasound contrast agent. Z Kardiol 90: pp. 419-426
    100. Lutte, S, Pohlmann, A, Zaychikov, E, Schwartz, E, Becher, JR, Heumann, H, Friedrich, B (2012) Autotrophic production of stable-isotope-labeled arginine in Ralstonia eutropha Strain H16. Appl Environ Microbiol 78: pp. 7884-7890
    101. Elbahloul, Y, Steinbuchel, A (2006) Engineering the genotype of Acinetobacter sp strain ADP1 to enhance biosynthesis of cyanophycin. Appl Environ Microbiol 72: pp. 1410-1419
    102. Kroll, J, Steinle, A, Reichelt, R, Ewering, C, Steinbuchel, A (2009) Establishment of a novel anabolism-based addiction system with an artificially introduced mevalonate pathway: complete stabilization of plasmids as universal application in white biotechnology. Metab Eng 11: pp. 168-177
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Applied Microbiology
    Environmental Engineering/Biotechnology
  • 出版者:BioMed Central
  • ISSN:1475-2859
文摘
L-arginine (ARG) is an important amino acid for both medicinal and industrial applications. For almost six decades, the research has been going on for its improved industrial level production using different microorganisms. While the initial approaches involved random mutagenesis for increased tolerance to ARG and consequently higher ARG titer, it is laborious and often leads to unwanted phenotypes, such as retarded growth. Discovery of L-glutamate (GLU) overproducing strains and using them as base strains for ARG production led to improved ARG production titer. Continued effort to unveil molecular mechanisms led to the accumulation of detailed knowledge on amino acid metabolism, which has contributed to better understanding of ARG biosynthesis and its regulation. Moreover, systems metabolic engineering now enables scientists and engineers to efficiently construct genetically defined microorganisms for ARG overproduction in a more rational and system-wide manner. Despite such effort, ARG biosynthesis is still not fully understood and many of the genes in the pathway are mislabeled. Here, we review the major metabolic pathways and its regulation involved in ARG biosynthesis in different prokaryotes including recent discoveries. Also, various strategies for metabolic engineering of bacteria for the overproduction of ARG are described. Furthermore, metabolic engineering approaches for producing ARG derivatives such as L-ornithine (ORN), putrescine and cyanophycin are described. ORN is used in medical applications, while putrescine can be used as a bio-based precursor for the synthesis of nylon-4,6 and nylon-4,10. Cyanophycin is also an important compound for the production of polyaspartate, another important bio-based polymer. Strategies outlined here will serve as a general guideline for rationally designing of cell-factories for overproduction of ARG and related compounds that are industrially valuable.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700