In situ characterization of natural pyrite bioleaching using electrochemical noise technique
详细信息    查看全文
  • 作者:Guo-bao Chen ; Hong-ying Yang ; Hai-jun Li
  • 关键词:bioleaching ; pyrite ; electrochemical noise ; biological oxidation ; chemical oxidation
  • 刊名:International Journal of Minerals, Metallurgy, and Materials
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:23
  • 期:2
  • 页码:117-126
  • 全文大小:2,270 KB
  • 参考文献:[1]M. Vera, A. Schippers, and W. Sand, Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation: part A, Appl. Microbiol. Biotechnol., 97(2013), No. 17, p. 7529.CrossRef
    [2]Y.T. Liang, S. Zhu, J. Wang, C.B. Ai, and W.Q. Qin, Adsorption and leaching of chalcopyrite by Sulfolobus metallicus YN24 cultured in the distinct energy sources, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 549.CrossRef
    [3]B. Denise, A.A. Heloisa, V.B. Assis, and G. Oswaldo, Electrochemical Techniques Used to Study Bacterial-Metal Sulfides Interactions in Acidic Environments, Springer, Dordrecht, 2007, p. 59.
    [4]A. Ahmadi, M. Khezri, A.A. Abdollahzadeh, and M. Askari, Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of Golgohar Iron Mine, Iran, Hydrometallurgy, 154(2015), p. 1.
    [5]D. Mile, K. Ana, T. Visa, and M. Novica, Influence of pyrometallurgical copper production on the environment, J. Hazard. Mater., 164(2009), No. 2-3, p. 892.CrossRef
    [6]S.H. Yin, A.X. Wu, S.Y. Wang, and H.J. Wang, Simulation of solute transportation within porous particles during the bioleaching process, Int. J. Miner. Metall. Mater., 17(2010), No. 4, p. 389.CrossRef
    [7]G.H. Gu, X.J. Sun, K.T. Hu, J.H. Li, and G.Z. Qiu, Electrochemical oxidation behavior of pyrite bioleaching by Acidthiobacillus ferrooxidans, Trans. Nonferrous Met. Soc. China, 22(2012), No. 7, p. 1250.CrossRef
    [8]Y.F. Mu, Y.J. Peng, and R.A. Lauten, Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant, Electrochim. Acta, 174(2015), p. 133.CrossRef
    [9]C.A. Constantin and P. Chirita, Oxidative dissolution of pyrite in acidic media, J. Appl. Electrochem., 43(2013), No. 7, p. 659.CrossRef
    [10]H.Y. Sun, M. Chen, L.C. Zou, R.B. Shu, and R.M. Ruan, Study of the kinetics of pyrite oxidation under controlled redox potential, Hydrometallurgy, 155(2015), p. 13.CrossRef
    [11]Y. Liu, Z. Dang, G.N. Lu, P.X. Wu, C.H. Feng, and X.Y. Yi, Utilization of electrochemical impedance spectroscopy for monitoring pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans, Miner. Eng., 24(2011), No. 8, p. 833.CrossRef
    [12]S.Y. Shi, Z.H. Fang, and J.R. Ni, Electrochemical impedance spectroscopy of marmatite-carbon paste electrode in the presence and absence of Acidithiobacillus ferrooxidans, Electrochem. Commun., 7(2005), No. 11, p. 1177.CrossRef
    [13]C.A. Loto, Electrochemical noise measurement technique in corrosion research, Int. J. Electrochem. Sci., 7(2012), p. 9248.
    [14]A.D. Wilson and M. Baietto, Applications and advances in electronic-nose technologies, Sensors, 9(2009), No. 7, p. 5099.CrossRef
    [15]C. Valentini, J. Fiora, and G. Ybarra, A comparison between electrochemical noise and electrochemical impedance measurements performed on a coal tar epoxy coated steel in 3% NaCl, Prog. Org. Coat., 73(2012), No. 2-3, p. 173.CrossRef
    [16]F. Mansfeld, C. Chen, C.C. Lee, and H. Xiao, The effect of asymmetric electrodes on the analysis of electrochemical impedance and noise data, Corros. Sci., 38(1996), No. 3, p. 497.CrossRef
    [17]D. Bevilaqua, H.A. Acciari, A.V. Benedetti, C.S. Fugivara, G. Tremiliosi Filho, and O. Garcia, Electrochemical noise analysis of bioleaching of bornite (Cu5FeS4) by Acidithiobacillus ferrooxidans, Hydrometallurgy, 83(2006), No. 1-4, p. 50.CrossRef
    [18]G.X. You, C.C. Yu, Y. Lu, and Z. Dang, Evaluation of the protective effect of polysiloxane coating on pyrite with electrochemical techniques, Electrochim. Acta, 93(2013), p. 65.CrossRef
    [19]G. Suresh and U.K. Mudali, Electrochemical noise analysis of pitting corrosion of type 304L stainless steel, Corrosion, 70(2014), No. 3, p. 283.CrossRef
    [20]S. Girija and U.K. Mudali, Electrochemical noise resistance evaluation of 304L SS in nitric acid and simulated nuclear high level waste, Corros. Eng. Sci. Technol., 49(2014), No. 5, p. 335.CrossRef
    [21]Y.J. Tan, Understanding the effects of electrode inhomogeneity and electrochemical heterogeneity on pitting corrosion initiation on bare electrode surfaces, Corros. Sci., 53(2011), No. 5, p. 1845.CrossRef
    [22]D. Nieves-Mendoza, C. Gaona-Tiburcio, H.L. Hervert-Zamora, R. Tobias J., P. Castro-Borges, R. Colas O., P. Zambrano Robledo, A. Martínez-Villafañe, and F. Almeraya-Calderón, Statistical analysis of factors influencing corrosion in concrete structures, Int. J. Electrochem. Sci., 7(2012), No. 6, p. 5495.
  • 作者单位:Guo-bao Chen (1)
    Hong-ying Yang (1)
    Hai-jun Li (1)

    1. School of Metallurgy, Northeastern University, Shenyang, 110819, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science
    Metallic Materials
    Mineral Resources
  • 出版者:Journal Publishing Center of University of Science and Technology Beijing, in co-publication with Sp
  • ISSN:1869-103X
文摘
An in situ characterization technique called electrochemical noise (ECN) was used to investigate the bioleaching of natural pyrite. ECN experiments were conducted in four active systems (sulfuric acid, ferric-ion, 9k culture medium, and bioleaching solutions). The ECN data were analyzed in both the time and frequency domains. Spectral noise impedance spectra obtained from power spectral density (PSD) plots for different systems were compared. A reaction mechanism was also proposed on the basis of the experimental data analysis. The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ. The bioleaching of natural pyrite is considered to be a bio-battery reaction, which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium (9k) solutions. The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching. Keywords bioleaching pyrite electrochemical noise biological oxidation chemical oxidation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700