Why so many unknown genes? Partitioning orphans from a representative transcriptome of the lone star tick Amblyomma americanum
详细信息    查看全文
  • 作者:Amanda K Gibson (1)
    Zach Smith (2)
    Clay Fuqua (1)
    Keith Clay (1)
    John K Colbourne (2) (3)
  • 关键词:Amblyomma americanum ; Chelicerata ; EST (Expressed Sequence Tags) ; Microarray ; Orphan genes ; Taxonomic isolation ; Tick ; Transcriptome
  • 刊名:BMC Genomics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:381KB
  • 参考文献:1. Pisani D, Poling L, Lyons-Weiler M, Hedges S: The colonization of land by animals: molecular phylogeny and divergence times among arthropods. / BMC Biol 2004,2(1):1. CrossRef
    2. Kunin V, Cases I, Enright A, de Lorenzo V, Ouzounis C: Myriads of protein families and still counting. / Genome Biol 2003, 4:401. CrossRef
    3. Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch T: More than just orphans: are taxonomically-restricted genes important in evolution? / Trends Genet 2009,25(9):404鈥?13. CrossRef
    4. Wilson GA, Bertrand N, Patel Y, Hughes JB, Feil EJ, Field D: Orphans as taxonomically restricted and ecologically important genes. / Microbiology 2005, 151:2499鈥?501. CrossRef
    5. Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK: The ecoresponsive genome of Daphnia pulex . / Science 2011,331(6017):555鈥?61. CrossRef
    6. Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbic V, Osborne EJ, Dermauw W, Thi Ngoc PC, Ortego F: The genome of Tetranychus urticae reveals herbivorous pest adaptations. / Nature 2011,479(7374):487鈥?92. CrossRef
    7. Gilbert D: / OrthoMCL clustering among 14 arthropod proteins (ARP2). http://arthropods.eugenes.org/arthropods, Dec. 2009, gilbertd@indiana.edu
    8. Clamp M, Fry B, Kamal M, Xie X, Cuff J, Lin MF, Kellis M, Lindblad-Toh K, Lander ES: Distinguishing protein-coding and noncoding genes in the human genome. / Proc Natl Acad Sci USA 2007,104(49):19428鈥?9433. CrossRef
    9. Schmid K, Aquadro C: The evolutionary analysis of 'orphans' from the Drosophila genome identifies rapidly diverging and incorrectly annotated genes. / Genetics 2001, 159:589鈥?98.
    10. Toll-Riera M, Bosch N, Bellora N, Castelo R, Armengol L, Estivill Z, Alba MM: Origin of primate orphan genes: a comparative genomic approach. / Mol Biol Evol 2009,26(3):603鈥?12. CrossRef
    11. Das S, Yu L, Gaitatzes C, Rogers R, Freeman J, Blenkowska J, Adams R, Smith T, Lindelien J: Biology's new Rosetta Stone. / Nature 1997, 385:29鈥?0. CrossRef
    12. Skovgaard M, Jensen LJ, Brunak S, Ussery D, Krogh A: On the total number of genes and their length distribution in complete microbial genomes. / Trends Genet 2001,17(8):425鈥?28. CrossRef
    13. Fukuchi S, Nishikawa K: Estimation of the number of authentic orphan genes in bacterial genomes. / DNA Res 2004, 11:219鈥?31. CrossRef
    14. Nagaraj S, Gasser R, Ranganathan S: A hitchhiker's guide to expressed sequence tag (EST) analysis. / Brief Bioinform 2006,8(1):6鈥?1. CrossRef
    15. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF: Complementary DNA sequencing: expressed sequence tags and human genome project. / Science 1991,252(5013):1651鈥?656. CrossRef
    16. Haas BJ, Volfovsky N, Town C, Troukhan M, Alexandrov N, Feldmann K, Flavell R, White O, Salzberg SL: Full-lenght messenger RNA sequences greatly improve genome annotation. / Genome Biol 2002,3(6):research0029.0021鈥?029.0012. CrossRef
    17. Rudd S, Mewes H-W, Mayer K: Sputnik: a database platform for comparative plant genomics. / Nucleic Acids Res 2003,31(1):128鈥?32. CrossRef
    18. Bonaldo M, Lennon G, Soares M: Normalization and subtraction: two approaches to facilitate gene discovery. / Genome Res 1996, 6:791鈥?06. CrossRef
    19. Hill C, Wikel S: The genome project: an opportunity for advancing tick research. / Trends Parasitol 2005,21(4):151鈥?53. CrossRef
    20. Meyer JM, Kurtti TJ, Zee JP, Hill CA: Genome organization of major tandem repeats in the hard tick, Ixodes scapularis . / Chromosome Res 2010,18(3):357鈥?70. CrossRef
    21. Guerrero FD, Moolhuijzen P, Peterson DG, Bidwell S, Caler E, Bellgard M, Nene VM, Djikeng A: Reassociation kinetics-based approach for partial genome sequencing of the cattle tick, Rhipicephalus (Boophilus) microplus . / BMC Genomics 2010, 11:374. CrossRef
    22. Guerrero FD, Nene VM, George JE, Barker SC, Willadsen P: Sequencing a new target genome: the Boophilus microplus (Acari: Ixodidae) genome project. / J Med Entomol 2006,43(1):9鈥?6. CrossRef
    23. Goodman J, Dennis D, Sonenshine DE: / Tick-borne Diseases of Humans. Washington, D.C.: ASM Press; 2005.
    24. Santos I, Valenzuela JG, Ribeiro JMC, De Castro M, Costa JN, Costa AM, Da Silva ER, Neto OBR, Rocha C, Daffre S: Gene discovery in Boophilus microplus , the cattle tick - the transcriptomes of ovaries, salivary glands, and hemocytes vol. 1026. In / Impact of Ecological Changes on Tropical Animal Health and Disease Control Edited by: Bokma BH, Blouin EF, Bechara GH. 2004, 242鈥?46.
    25. Alarcon-Chaidez FJ, Sun J, Wikel SK: Transcriptome analysis of the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae). / Insect Biochem Mol Biol 2007,37(1):48鈥?1. CrossRef
    26. Batista IFC, Chudzinski-Tavassi AM, Faria F, Simons SM, Barros-Batestti DM, Labruna MB, Leao LI, Ho PL, Junqueira-de-Azevedo ILM: Expressed sequence tags (ESTs) from the salivary glands of the tick Amblyomma cajennense (Acari: Ixodidae). / Toxicon 2008,51(5):823鈥?34. CrossRef
    27. Francischetti IMB, Mans BJ, Meng Z, Gudderra N, Veenstra TD, Pham VM, Ribeiro JMC: An insight into the sialome of the soft tick, Ornithodorus parkeri . / Insect Biochem Mol Biol 2008,38(1):1鈥?1. CrossRef
    28. Francischetti IMB, Pham VM, Mans BJ, Andersen JF, Mather TN, Lane RS, Ribeiro JMC: The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae). / Insect Biochem Mol Biol 2005,35(10):1142鈥?161. CrossRef
    29. Nakajima C, Vaz ID, Imamura S, Konnai S, Ohashi K, Onuma M: Random sequencing of cDNA library derived from partially-fed adult female Haemaphysalis longicornis salivary gland. / J Vet Med Sci 2005,67(11):1127鈥?131. CrossRef
    30. Nene V, Lee D, Quackenbush J, Skilton R, Mwaura S, Gardner MJ, Bishop R: AvGI, an index of genes transcribed in the salivary glands of the ixodid tick Amblyomma variegatum . / Int J Parasitol 2002,32(12):1447鈥?456. CrossRef
    31. Valenzuela JG, Francischetti IMB, Pham VM, Garfield MK, Mather TN, Ribeiro JMC: Exploring the sialome of the tick Ixodes scapularis . / J Exp Biol 2002,205(18):2843鈥?864.
    32. Aljamali MN, Hern L, Kupfer D, Downard S, So S, Roe BA, Sauer JR, Essenberg RC: Transcriptome analysis of the salivary glands of the female tick Amblyomma americanum (Acari: Ixodidae). / Insect Mol Biol 2009,18(2):129鈥?54. CrossRef
    33. Chmelar J, Anderson JM, Mu J, Jochim RC, Valenzuela JG, Kopecky J: Insight into the sialome of the castor bean tick, Ixodes ricinus . / BMC Genomics 2008, 9:233. CrossRef
    34. Francischetti IMB, Anderson JM, Manoukis N, Pham VM, Ribeiro JMC: An insight into the sialotranscriptome and proteome of the coarse bontlegged tick, Hyalomma marginatum rufipes . / J Proteomics 2011,74(12):2892鈥?908. CrossRef
    35. Francischetti IMB, Meng Z, Mans BJ, Gudderra N, Hall M, Veenstra TD, Pham VM, Kotsyfakis M, Ribeiro JMC: An insight into the salivary transcriptome and proteome of the soft tick and vector of epizootic bovine abortion, Ornithodoros coriaceus . / J Proteomics 2008,71(5):493鈥?12. CrossRef
    36. Allan B, Dutra H, Goessling L, Barnett K, Chase J, Maquis R, Pang G, Storch G, Thach R, Orrock J: Invasive honeysuckle eradication reduces tick-borne disease risk by altering host dynamics. / Proc Natl Acad Sci USA 2010,107(43):18523鈥?8527. CrossRef
    37. Childs J, Paddock C: The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States. / Ann Rev Entomol 2003, 48:307鈥?37. CrossRef
    38. Paddock C, Yabsley J: Ecological havoc, the rise of white-tailed deer, and the emergence of Amblyomma americanum -associated zoonoses in the United States. / Curr Top Microbiol 2007, 315:289鈥?24. CrossRef
    39. Anderson BE, Dawson JE, Jones DC, Wilson KH: Ehrlichia chaffeensis , a new species associated with human ehrlichiosis. / J Clin Microbiol 1991,29(12):2838鈥?842.
    40. Armstrong PM, Brunet LR, Spielman A, Telford SR 3rd: Risk of Lyme disease: perceptions of residents of a Lone Star tick-infested community. / Bull World Health Organ 2001,79(10):916鈥?25.
    41. James AM, Liveris D, Wormser GP, Schwartz I, Montecalvo MA, Johnson BJ: Borrelia lonestari infection after a bite by an Amblyomma americanum tick. / J Infect Dis 2001,183(12):1810鈥?814. CrossRef
    42. Hopla , Downs C: The isolation of Bacterium tularense from the tick, Amblyomma americanum . / J Kans Entomol Soc 1953, 26:71鈥?2.
    43. Parola P, Raoult D: Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. / Clinical Inf Dis 2001, 32:897鈥?28. CrossRef
    44. McMullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS, Metcalfe MG, Batten BC, Albari帽o CG, Zaki SR, Rollin PE: A new phlebovirus associated with severe febrile illness in Missouri. / N Engl J Med 2012,367(9):834鈥?41. CrossRef
    45. Benson D, Karsch-Mizrachi I, Lipman D, Sayers E: GenBank. / Nucleic Acids Res 2011, 39:D32鈥?7. CrossRef
    46. Aljamali MN, Ramakrishnan VG, Weng H, Tucker JS, Sauer JR, Essenberg RC: Microarray analysis of gene expression changes in feeding female and male lone star ticks, Amblyomma americanum (L). / Arch Insect Biochem Physiol 2009,71(4):236鈥?53. CrossRef
    47. Tang Z, Choi J-H, Hemmerich C, Sarangi A, Colbourne J, Dong Q: ESTPiper - a web-based analysis pipeline for expressed sequence tags. / BMC Genomics 2009,10(1):174. CrossRef
    48. Huang X, Madan A: CAP3: a DNA sequence assembly program. / Genome Res 1999, 9:868鈥?77. CrossRef
    49. Consortium U: Reorganizing the protein space at the Universal Protein Resource (UniProt). / Nucleic Acids Res 2012, 40:D71-D75. CrossRef
    50. Dujon B: The yeast genome project: what did we learn? / Trends Genet 1996,12(7):263鈥?70. CrossRef
    51. Domazet-Loso T, Tautz D: An evolutionary analysis of orphan genes in Drosophila . / Genome Res 2003, 13:2213鈥?219. CrossRef
    52. Fischer D, Eisenberg D: Finding families for genomic ORFans. / Bioinformatics 1999,15(9):759鈥?62. CrossRef
    53. Alimi J, Poirot O, Lopez F, Claverie J: Reverse transcriptase-polymerase chain reaction validation of 25 "orphan" genes from Escherichia coli K-12 MG1655. / Genome Res 2000, 10:959鈥?66. CrossRef
    54. Jensen LJ, Skovgaard M, Sicheritz-Ponten T, Jorgensen MK, Lundegaard C, Pedersen CC, Petersen N, Ussery D: Analysis of two large functionally uncharacterized regions in the Methanopyrus kandleri AV19 genome. / BMC Genomics 2003,4(1):12. CrossRef
    55. Zdobnov EM, von Mering C, Letunic I, Torrents D, Suyama M, Copley RR, Christophides GK, Thomasova D, Holt RA, Subramanian GM: Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster . / Science 2002,298(5591):149鈥?59. CrossRef
    56. Frith MC, Wilming LG, Forrest A, Kawaji H, Tan SL, Wahlestedt C, Bajic VB, Kai C, Kawai J, Carninci P: Pseudo鈥搈essenger RNA: phantoms of the transcriptome. / PLoS Genet 2006,2(4):e23. CrossRef
    57. Shemesh R, Novik A, Edelheit S, Sorek R: Genomic fossils as a snapshot of the human transcriptome. / Proc Natl Acad Sci USA 2006,103(5):1364鈥?369. CrossRef
    58. Jeyaprakash A, Hoy MA: First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. / Exp Appl Acarol 2009,47(1):1鈥?8. CrossRef
    59. Klompen JSH, Black WC, Keirans JE, Oliver JH: Evolution of ticks. / Annu Rev Entomol 1996, 41:141鈥?61. CrossRef
    60. Geraci NS, Johnston JS, Robinson JP, Wikel SK, Hill CA: Variation in genome size of argasid and ixodid ticks. / Insect Biochem Mol Biol 2007,37(5):399鈥?08. CrossRef
    61. Ullmann A, Lima C, Guerrero F, Piesman J, Black WC IV: Genome size and organization in the blacklegged tick, Ixodes scapularis and the Southern cattle tick, Boophilus microplus . / Insect Mol Biol 2005,14(2):217鈥?22. CrossRef
    62. Hill CA, Tick and Mite Genomics Consortium: / Genome analysis of major tick and mite vectors of human pathogens. 2010. White Paper
    63. Wang M, Guerrero FD, Pertea G, Nene VM: Global comparative analysis of ESTs from the southern cattle tick, Rhipicephalus (Boophilus) microplus . / BMC Genomics 2007, 8:368. CrossRef
    64. Anderson JM, Sonenshine DE, Valenzuela JG: Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae). / BMC Genomics 2008, 9:552. CrossRef
    65. Beaufays J, Adam B, Decrem Y, Pr茅v么t P-P, Santini S, Brasseur R, Brossard M, Lins L, Vanhamme L, Godfroid E: Ixodes ricinus tick lipocalins: identification, cloning, phylogenetic analysis and biochemical characterization. / PLoS One 2008,3(12):e3941. CrossRef
    66. Nene V, Lee D, Kang'a S, Skilton R, Shah T, de Villiers E, Mwaura S, Taylor D, Quackenbush J, Bishop R: Genes transcribed in the salivary glands of female Rhipicephalus appendiculatus ticks infected with Theileria parva . / Insect Biochem Mol Biol 2004,34(10):1117鈥?128. CrossRef
    67. Lehane M: / The Biology of Blood-Sucking in Insects. New York: Cambridge University Press; 2005. CrossRef
    68. Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, Thomson NR, Quail M, Smith F, Walker D, Libberton B: Antagonistic coevolution accelerates molecular evolution. / Nature 2010,464(7286):275鈥?78. CrossRef
    69. Bishop JG, Dean AM, Mitchell-Olds T: Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution. / Proc Natl Acad Sci USA 2000,97(10):5322鈥?327. CrossRef
    70. Chou H-H, Holmes ME: DNA sequence quality trimming and vector removal. / Bioinformatics 2001,17(12):1093鈥?104. CrossRef
    71. Gauthier J-P, Legeai F, Zasadzinski A, Rispe C, Tagu D: AphidBase: a database for aphid genomic resources. / Bioinformatics 2007,23(6):783鈥?84. CrossRef
    72. Lawson D: VectorBase: a data resource for invertebrate vector genomics. / Nucleic Acids Res 2009, 37:D583鈥?87. CrossRef
    73. Munoz-Torres M, Reese J, Childers C, Bennett A, Sundaram J, Childs K, Anzola J, Milshina N, Elsik C: Hymenoptera genome database: integrated community resources for insect species of the order Hymenoptera. / Nucleic Acids Res 2011, 39:D658-D662. CrossRef
    74. Wang J, Xia Q, He X, Dai M, Ruan J, Chen J, Yu G, Yuan H, Hu Y, Li R: SilkDB: a knowledgebase for silkworm biology and genomics. / Nucleic Acids Res 2005, 33:D399-D402. CrossRef
    75. Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, Marygold S, Millburn G, Osumi-Sutherland D, Schroeder A, Seal R: FlyBase: enhancing Drosophila Gene Ontology annotations. / Nucleic Acids Res 2009, 37:D555-D559. CrossRef
    76. Wang L, Wang S, Li Y, Paradesi M, Brown S: Beetlebase: the model organism database for Tribolium castaneum . / Nucleic Acids Res 2007, 35:D476-D479. CrossRef
    77. Gilbert D, Singan V, Colbourne JK: wFleaBase: the Daphnia genomics information system. / BMC Bioinformatics 2005, 6:45. CrossRef
    78. Min X, Butler G, Storms R, Tsang A: OrfPredictor: predicting protein-coding regions in EST-derived sequences. / Nucleic Acids Res 2005, Web Server Issue:W677-W680. CrossRef
    79. / Integrative Services for Genomic Analysis. http://isga.cgb.indiana.edu/Home. Indiana University Center for Genomics and Bioinformatics
    80. Drummond A, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S: / Geneious v5.4. 2011. Available from http://www.geneious.com/
    81. Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR, Cerrina F: Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. / Nat Biotech 1999,17(10):974鈥?78. CrossRef
    82. Lopez JA, Colbourne JK: Dual-labeled expression-tiling microarray protocol for empirical annotation of genome sequences. CGB Technical Report . 2011.
    83. Peterson M, Whittaker D, Ambreth S, Sureshchandra S, Buechlein A, Podicheti R, Choi J-H, Lai Z, Mockatis K, Colbourne J: De novo transcriptome sequencing in a songbird, the dark-eyed junco ( Junco hyemalis ): genomic tools for an ecological model system. / BMC Genomics 2012,13(1):305. CrossRef
    84. Smyth G: Limma: linear models for microarray data. In / Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. New York: Springer; 2005:397鈥?20. CrossRef
    85. Development Core Team R: / R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2010.
  • 作者单位:Amanda K Gibson (1)
    Zach Smith (2)
    Clay Fuqua (1)
    Keith Clay (1)
    John K Colbourne (2) (3)

    1. Department of Biology, Indiana University, Bloomington, IN, 47405, USA
    2. The Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
    3. Current address: School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
文摘
Background Genomic resources within the phylum Arthropoda are largely limited to the true insects but are beginning to include unexplored subphyla, such as the Crustacea and Chelicerata. Investigations of these understudied taxa uncover high frequencies of orphan genes, which lack detectable sequence homology to genes in pre-existing databases. The ticks (Acari: Chelicerata) are one such understudied taxon for which genomic resources are urgently needed. Ticks are obligate blood-feeders that vector major diseases of humans, domesticated animals, and wildlife. In analyzing a transcriptome of the lone star tick Amblyomma americanum, one of the most abundant disease vectors in the United States, we find a high representation of unannotated sequences. We apply a general framework for quantifying the origin and true representation of unannotated sequences in a dataset and for evaluating the biological significance of orphan genes. Results Expressed sequence tags (ESTs) were derived from different life stages and populations of A. americanum and combined with ESTs available from GenBank to produce 14,310 ESTs, over twice the number previously available. The vast majority (71%) has no sequence homology to proteins archived in UniProtKB. We show that poor sequence or assembly quality is not a major contributor to this high representation by orphan genes. Moreover, most unannotated sequences are functional: a microarray experiment demonstrates that 59% of functional ESTs are unannotated. Lastly, we attempt to further annotate our EST dataset using genomic datasets from other members of the Acari, including Ixodes scapularis, four other tick species and the mite Tetranychus urticae. We find low homology with these species, consistent with significant divergence within this subclass. Conclusions We conclude that the abundance of orphan genes in A. americanum likely results from 1) taxonomic isolation stemming from divergence within the tick lineage and limited genomic resources for ticks and 2) lineage-specific genes needing functional genomic studies to evaluate their association with the unique biology of ticks. The EST sequences described here will contribute substantially to the development of tick genomics. Moreover, the framework provided for the evaluation of orphan genes can guide analyses of future transcriptome sequencing projects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700