On a Reproductive Stage-Structured Model for the Population Dynamics of the Malaria Vector
详细信息    查看全文
  • 作者:Gideon A. Ngwa ; Terence T. Wankah…
  • 关键词:Gonotrophic cycle ; Hopf bifurcation ; Vectorial reproduction number ; Global stability
  • 刊名:Bulletin of Mathematical Biology
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:76
  • 期:10
  • 页码:2476-2516
  • 全文大小:1,039 KB
  • 参考文献:1. Baton LA, Ranford-Cartwright LC (2005) Spreading the seeds of million-murdering death: metamorphoses of malaria in the mosquito. Trends Parasitol 21(12):573-80 CrossRef
    2. Br?nnstr?m ?, Sumpter DJT (2005) The role of competition and clustering in population dynamics. Proc R Soc B 272:2065-072 CrossRef
    3. Cast?nera MB, Aparicio JP, Gurtler RE (2003) A stage-structured stochastic model of the population dynamics of Triatoma infestans, main vector of chagas disease. Ecol Model 162:33-3 CrossRef
    4. Charlwood JD, Jones MDR (1979) Mating behaviour in the mosquito Anopheles gambiae s. l. i. Close range and contact behaviour. Physiol Entomol 4(2):111-20 CrossRef
    5. Charlwood JD, Thompson R, Madsen H (2003) Observations on the swarming and mating behaviour of / Anopheles funestus from southern Mozambique. Malar J 2(2). http://www.malariajournal.com/content/s/1/2
    6. Chitnis N, Cushing JM, Hyman JM (2006) Bifurcation analysis of a mathematical model for malaria transmission. SIAM J Appl Math 67(1):24-5 CrossRef
    7. Costantino RF, Desharnais RA, Cushing JM, Brian D (1998) Chaotic dynamics in an insect population. Science 275(5298):389-91 CrossRef
    8. Craig GB Jr (1967) Mosquito, female monogamy induced by a male accessory gland substance. Science 156(781):1499-501 CrossRef
    9. Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio \({R}_0\) in models for infectious diseases in heterogeneous populations. J Math Biol 28:365-82 CrossRef
    10. Eichner Martin (1996) Difference equation model for malaria transmission and disease. Harvard School of Public Health, Boston
    11. Giles HM, Warrel DA (2002) Bruce-Chwatt’s essential malariology, 4th edn. Hodder Arnold Publication, London
    12. Gomulski L (1990) Polyandry in nulliparous Anopheles gambiae mosquitoes (diptera: Culicidae). Bull Entomol Res 80(4):393-96 CrossRef
    13. Hahn W (1967) Stabilty of motion. Springer, New York CrossRef
    14. Hale HK (1969) Ordinary differential equations. Wiley, New York
    15. Hastings IM, D’Alessandro U (2000) Modelling a predictable disaster: the rise and spread of drug-resistant malaria. Parasitol Today 16:340-47 CrossRef
    16. James Powell A, Logan Jesse A (2005) Insect seasonality: a circle map analysis of the temperature-driven life cycles. Theor Popul Biol 67:161-79 CrossRef
    17. Jang SR-J (2005) Contest and scramble competition with a dynamic resource. Nonlinear Anal 63:109-18 CrossRef
    18. Klowden JM (2001) Sexual receptivity in Anopheles gambiae mosquitoes: absence of controle by male accessory gland substances. J Insect Physiol 47(7):661-66 CrossRef
    19. Klowden Marc J, Briegel Hans (1994) Mosquito gonotrophic cycle and multiple feeding potential: contrast between Anopheles and Aedes (Diptera: Culicidae). J Med Entomol 31(4):618-22
    20. Lutambi Angelina Mageni, Penny Melissa A, Chitnis Nakul, Smith Thomas (2013) Mathematical modelling of mosquito dispersal in a heterogeneous patchy environment. Math Biosci 241(2):198-16 CrossRef
    21. Maynard-Smith J, Slatkin M (1973) The satbility of predator-prey systems. Ecology 54:384-91 CrossRef
    22. McCall PJ, Kelly David W (2002) Learning and memory in disease vectors. Trends Parasitol 18(10):429-33 CrossRef
    23. N?sell Ingemar (1985) Hybrid models of tropical infections. Lecture notes in biomathematics. Springer, Berlin CrossRef
    24. Ngonghala CN, Ngwa GA, Teboh-Ewungkem MI (2012) Periodic oscillations and backward bifurcation in a model for the dynamics of malaria transmission. Math Biosci 240(1):45-2
    25. Ngonghala CN, Teboh-Ewungkem MI, Ngwa GA (2014) Persistent oscillations and backward bifurcation in a malaria model with varying human and mosquito populations: implications for control. J Math Biol. doi:10.1007/s00285-014-0804-9
    26. Ngwa GA, Niger AM, Gumel AB (2010) Mathematical assessment of the role of non-linear birth and maturation delay in the population dynamics of the malaria vector. Appl Math Comput 217:3286-313 CrossRef
    27. Ngwa GA, Shu WS (2000) A mathematical model for endemic malaria with variable human and mosquito populations. Math Comput Model 32(7):747-63 CrossRef
    28. Ngwa Gideon A (2006) On the population dynamics of the malaria vector. Bull Math Biol 68(8):2161-189 CrossRef
    29. Nourridine Siewe, Teboh-Ewungkem Miranda I, Ngwa Gideon A (2011) A mathematical model of the population dynamics disease-transmitting vectors with spatial consideration. J Biol Dyn 5(4):335-65 CrossRef
    30. Porphyre T, Bicout DJ, Sabatier P (2005) Modelling the abundance of mosquito vectors versus flooding dynamics. Ecol Model 183:173-81 CrossRef
    31. Powel PD (2011) Calculatng determinants of block matrices. arXiv:1112.4379v1 [math.RA], 2011
    32. Raffy M, Tran A (2005) On the dynamics of flying insects populations controlled by large scale information. Theor Popul Biol 68:91-04 CrossRef
    33. Silver John B (1998) Mosquito ecology field sampling methods, 3rd edn. Springer, New York
    34. Silvester John R (2000) Determinants of block matrices. Math Gaz 85(501):460-67 CrossRef
    35. Takken W, Knols GJB (1999) Odor-mediated Behaviour of Afrotropical malaria mosquitoes. Annu Rev Entomol 44:131-57 CrossRef
    36. Teboh-Ewungkem MI, Ngwa GA, Ngonghala CN (2013) Models and proposals for malaria: a review. Math Popul Stud 20(2):57-1 CrossRef
    37. Teboh-Ewungkem MI, Wang M (2012) Male fecundity and optimal gametocyte sex ratios for plasmodium falciparum during incomplete fertilization. J Theor Biol 307:183-92 CrossRef
    38. Teboh-Ewungkem MI, Yuster T (2010) A within-vector mathematical model of plasmodium falciparum and implications of incomplete fertilization on optimal gametocyte sex ratio. J Theor Biol 264(2):273-86 CrossRef
    39. Thomas Moon Edward (1976) A statistical model for the dynamics of a mosquito vector (Culex tarsalis) population. Biometric 32(2):355-68 CrossRef
    40. Tiemi Takahashi Lucy, Maidana Norberto Anibal, Jr Wilson Castro Ferrerira, Pulino Petronio, Yang Hyun Mo (2005) Mathematical models for Aedes aegypti dispersal dynamics: travelling waves by wing and wind. Bull Math Biol 67:509-28 CrossRef
    41. van den Driessche P, Watmough James (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29-8 CrossRef
    42. Verhulst PF (1838) Notice sur la loi que la population suit dans son acroissement. Corr Math Phys 10:113-21
    43. Villarreal C, Fuentes-Maldonado G, Rodriguez MH, Yuval B (1994) Low rates of multiple fertilization in parous anopheles albimanus. J Am Mosq Control Assoc 10(1):67-9
    44. Wanji S, Mafo SS, Tendongfor N, Tanga MC, Tchuente F, Bilong Bilong CF, Njine T (2009) Spatial distribution, environmental and physicochemical characterization of anopheles breeding sites in the mount cameroon region. J Vector Borne Dis 46:75-0
    45. Yandel SB, Hogg BD (1988) Modelling insect natality using splines. Biometrics 44(2):385-95 CrossRef
    46. Yuval B, Fritz GN (1994) Multiple mating in female mosquitoes-evidence from a field population of anopheles freeborni (diptera: Culicidae). Bull Entomol Res 84(01):137-39 CrossRef
  • 作者单位:Gideon A. Ngwa (1)
    Terence T. Wankah (1)
    Mary Y. Fomboh-Nforba (1)
    Calsitus N. Ngonghala (2)
    Miranda I. Teboh-Ewungkem (3)

    1. Department of Mathematics, University of Buea, P.O. Box 63, Buea, Cameroon
    2. National Institute for Mathematical and Biological Synthesis (NIMBioS), The University of Tennessee, Knoxville, TN, 37996-1527, USA
    3. Department of Mathematics, Lehigh University, Bethlehem, PA, 18015, USA
  • ISSN:1522-9602
文摘
A reproductive stage-structured deterministic differential equation model for the population dynamics of the human malaria vector is derived and analysed. The model captures the gonotrophic and behavioural life characteristics of the female Anopheles sp. mosquito and takes into consideration the fact that for the purposes of reproduction, the female Anopheles sp. mosquito must visit and bite humans (or animals) to harvest necessary proteins from blood that it needs for the development of its eggs. Focusing on mosquitoes that feed exclusively on humans, our results indicate the existence of a threshold parameter, the vectorial reproduction number, whose size increases with increasing number of gonotrophic cycles, and is also affected by the female mosquito’s birth rate, its attraction and visitation rate to human residences, and its contact rate with humans. A stability analysis of the model indicates that the mosquito can establish itself in the environment if and only if the value of the vectorial reproduction number exceeds unity and that mosquito eradication is possible if the vectorial reproduction number is less than unity, since, then, the trivial steady state which always exist is unique and is globally and asymptotically stable. When a persistent vector population steady state exists, it is locally and asymptotically stable for a range of reproduction numbers, but can also be driven to instability via a Hopf bifurcation as the reproduction number increases further away from unity. The model derivation identifies and characterizes control parameters relating to activities such as human-mosquito contact and the mosquito’s survival chances between blood meals and egg laying. Our results show that the total mosquito population size increases with increasing number of gonotrophic cycles. Therefore understanding the fundamental aspects of the mosquito’s behaviour provides a pathway for the study of human-mosquito contact and mosquito population control. Control of the mosquito population densities would ultimately lead to malaria control.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700