Comparative assessment of diverse strategies for malaria vector population control based on measured rates at which mosquitoes utilize targeted resource subsets
详细信息    查看全文
  • 作者:Gerry F Killeen (1) (2)
    Samson S Kiware (1) (4)
    Aklilu Seyoum (2)
    John E Gimnig (3)
    George F Corliss (4)
    Jennifer Stevenson (5) (6)
    Christopher J Drakeley (5)
    Nakul Chitnis (7) (8) (9)

    1. Environmental Health and Ecological Sciences Thematic Group
    ; Ifakara Health Institute ; Ifakara ; Kilombero ; Morogoro ; United Republic of Tanzania
    2. Liverpool School of Tropical Medicine
    ; Vector Biology Department ; Pembroke Place ; Liverpool ; L3 5QA ; UK
    4. Department of Electrical and Computer Engineering
    ; Marquette University ; Milwaukee ; WI ; 53201-1881 ; USA
    3. Centers for Disease Control and Prevention
    ; Division of Parasitic Diseases and Malaria ; Atlanta ; Georgia ; 30333 ; USA
    5. Department of Immunology and Infection
    ; Faculty of Infectious and Tropical Diseases ; London School of Hygiene and Tropical Medicine ; Keppel Street ; London ; WC1E 7HT ; UK
    6. Johns Hopkins Bloomberg School of Public Health
    ; Johns Hopkins Malaria Research Institute ; Baltimore ; MD ; 21205 ; USA
    7. Department of Epidemiology and Public Health
    ; Swiss Tropical and Public Health Institute ; Basel ; Switzerland
    8. University of Basel
    ; Basel ; Switzerland
    9. Fogarty International Center
    ; National Institutes of Health ; Bethesda ; MD ; 20892 ; USA
  • 关键词:Plasmodium ; Anopheles ; Vector control ; Mosquito ; Malaria ; Target product profile
  • 刊名:Malaria Journal
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:607 KB
  • 参考文献:1. Wenger, EA, Eckhoff, PA (2013) A mathematical model of the impact of present and future malaria vaccines. Malar J 12: pp. 126 CrossRef
    2. Eckhoff, PA (2013) Mathematical models of within-host and transmission dynamics to determine effects of malaria Interventions in a variety of transmission settings. Am J Trop Med Hyg 88: pp. 817-827 CrossRef
    3. Okell, LC, Griffin, JT, Kleinschmidt, I, Hollingsworth, TD, Churcher, TS, White, MT, Bousema, T, Drakeley, CJ, Ghani, AC (2011) The potential contribution of mass treatment to the control of Plasmodium falciparum malaria. PLoS One 6: pp. e20179 CrossRef
    4. Killeen, GF (2013) A second chance to tackle African malaria vector mosquitoes that avoid houses and don鈥檛 take drugs. Am J Trop Med Hyg 88: pp. 809-816 CrossRef
    5. Ferguson, HM, Dornhaus, A, Beeche, A, Borgemeister, C, Gottlieb, M, Mulla, MS, Gimnig, JE, Fish, D, Killeen, GF (2010) Ecology: a prerequisite for malaria elimination and eradication. PLoS Med 7: pp. e1000303 CrossRef
    6. Russell, TL, Beebe, NW, Cooper, RD, Lobo, NF, Burkot, TR (2013) Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J 12: pp. 56 CrossRef
    7. Durnez, L, Coosemans, M Residual Transmission of Malaria: An Old Issue for New Approaches. In: Manguin, S eds. (2013) Anopheles Mosquitoes 鈥?New Insights into Malaria Vectors. Intech, Rijeka, pp. 671-704
    8. Govella, NJ, Chaki, PP, Killeen, GF (2013) Entomological surveillance of behavioural resilience and resistance in residual malaria vector populations. Malar J 12: pp. 124 CrossRef
    9. Killeen, GF, Seyoum, A, Sikaala, CH, Zomboko, AS, Gimnig, JE, Govella, NJ, White, MT (2013) Eliminating malaria vectors. Parasit Vectors 6: pp. 172 CrossRef
    10. Sinka, ME, Bangs, MJ, Manguin, S, Rubio-Palis, Y, Chareonviriyaphap, T, Coetzee, M, Mbogo, CM, Hemingway, J, Patil, AP, Temperley, WH, Gething, PW, Kabaria, CW, Burkot, TR, Harbach, RE, Hay, SI (2012) A global map of dominant malaria vectors. Parasit Vectors 5: pp. 69 CrossRef
    11. Kiware, SS, Chitnis, N, Devine, GJ, Moore, SJ, Majambere, S, Killeen, GF (2012) Biologically meaningfull coverage indicators for eliminating malaria transmission. Biol Lett 8: pp. 874-877 CrossRef
    12. Pluess, B, Tanser, FC, Lengeler, C, Sharp, BL (2010) Indoor residual spraying for preventing malaria. Cochrane Database Syst Rev.
    13. Scholte, EJ, Ng鈥檋abi, K, Kihonda, J, Takken, W, Paaijmans, K, Abdulla, S, Killeen, GF, Knols, BG (2005) An entomopathogenic fungus for control of adult African malaria mosquitoes. Science 308: pp. 1641-1642 CrossRef
    14. Odiere, M, Bayoh, MN, Gimnig, J, Vulule, J, Irungu, L, Walker, E (2007) Sampling outdoor, resting Anopheles gambiae and other mosquitoes (Diptera: Culicidae) in Western Kenya with clay pots. J Med Entomol 44: pp. 14-22 CrossRef
    15. Farenhorst, M, Farina, D, Scholte, EJ, Takken, W, Hunt, RH, Coetzee, M, Knols, BGJ (2008) African water storage pots for the delivery of the entomopathogenic fungus Metarhizium anisopliae to the malaria vectors Anopheles gambiae s.s. and Anopheles funestus. Am J Trop Med Hyg 78: pp. 910-916
    16. van den Bijllaardt, W, Ter Braak, R, Shekalaghe, S, Otieno, S, Mahande, A, Sauerwein, R, Takken, W, Bousema, T (2009) The suitability of clay pots for indoor sampling of mosquitoes in an arid area in northern Tanzania. Acta Trop 111: pp. 197-199 CrossRef
    17. M眉ller, G, Schlein, Y (2006) Sugar-questing mosquitoes in arid areas gather on scarce blossoms that can be used for control. Int J Parasitol 36: pp. 1077-1080 CrossRef
    18. Burkot, TR, Russell, TL, Reimer, LJ, Bugoro, H, Beebe, NW, Cooper, RD, Sukawati, S, Collins, FH, Lobo, NF (2013) Barrier screens: a method to sample blood-fed and host-seeking exophilic mosquitoes. Malar J 12: pp. 49 CrossRef
    19. M眉ller, G, Schlein, Y (2008) Efficacy of toxic sugar baits against cistern-dwelling Anopheles claviger. Trans R Soc Trop Med Hyg 102: pp. 480-484 CrossRef
    20. M眉ller, GC, Beier, JC, Traore, SF, Toure, MB, Traore, MM, Bah, S, Doumbia, S, Schlein, Y (2010) Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa.. Malar J 9: pp. 210 CrossRef
    21. Foster, WA (1995) Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol 40: pp. 443-474 CrossRef
    22. Garrett-Jones, C (1964) The human blood index of malarial vectors in relationship to epidemiological assessment. Bull World Health Organ 30: pp. 241-261
    23. Garrett-Jones, C, Boreham, P, Pant, CP (1980) Feeding habits of anophelines (Diptera: Culicidae) in 1971鈥?978, with reference to the human blood index: a review. Bull Entomol Res 70: pp. 165-185 CrossRef
    24. Kiware, SS, Chitnis, N, Moore, SJ, Devine, GJ, Majambere, S, Killeen, GF (2012) Simplified models of vector control impact upon malaria transmission by zoophagic mosquitoes. PLoS One 7: pp. e37661 CrossRef
    25. Killeen, GF, McKenzie, FE, Foy, BD, Bogh, C, Beier, JC (2001) The availability of potential hosts as a determinant of feeding behaviours and malaria transmission by mosquito populations. Trans R Soc Trop Med Hyg 95: pp. 469-476 CrossRef
    26. Killeen, GF, Chitnis, N, Moore, SJ, Okumu, FO (2011) Target product profile choices for intra-domiciliary malaria vector control pesticide products: repel or kill?. Malar J 10: pp. 207 CrossRef
    27. Okumu, FO, Moore, SJ, Govella, NJ, Chitnis, N, Killeen, GF (2010) Potential benefits, limitations and target product-profiles of odor-baited mosquito traps as a means of malaria control. PLoS One 5: pp. e11573 CrossRef
    28. Killeen, GF, Smith, TA, Ferguson, HM, Mshinda, H, Abdulla, S, Lengeler, C, Kachur, SP (2007) Preventing childhood malaria in Africa by protecting adults from mosquitoes with insecticide-treated nets. PLoS Med 4: pp. e229 CrossRef
    29. Killeen, GF, Smith, TA (2007) Exploring the contributions of bednets, cattle, insecticides and excito-repellency to malaria control: A deterministic model of mosquito host-seeking behaviour and mortality. Trans R Soc Trop Med Hyg 101: pp. 867-880 CrossRef
    30. Killeen, GF, Moore, SJ (2012) Target product profiles for protecting against outdoor malaria transmission. Malar J 11: pp. 17 CrossRef
    31. Killeen, GF, McKenzie, FE, Foy, BD, Schieffelin, C, Billingsley, PF, Beier, JC (2000) A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg 62: pp. 535-544
    32. Huho, BJ, Bri毛t, O, Seyoum, A, Sikaala, CH, Bayoh, N, Gimnig, JE, Okumu, FO, Diallo, D, Abdulla, S, Smith, TA, Killeen, GF (2013) Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. Int J Epidemiol 42: pp. 235-247 CrossRef
    33. Elliott, R (1972) The influence of vector behaviour upon malaria transmission. Am J Trop Med Hyg 21: pp. 755-763
    34. Seyoum, A, Sikaala, CH, Chanda, J, Chinula, D, Ntamatungiro, AJ, Hawela, M, Miller, JM, Russell, TL, Bri毛t, OJT, Killeen, GF (2012) Most exposure to Anopheles funestus and Anopheles quadriannulatus in Luangwa valley, south-east Zambia occurs indoors, even for users of insecticidal nets. Parasit Vectors 5: pp. 101 CrossRef
    35. Elliott, R (1967) Studies on Man-Vector Contact in Some Malarious Areas in Colombia. World Health Organization, Geneva
    36. Garrett-Jones, C (1964) A Method for Estimating the Man-Biting Rate. World Health Organization, Geneva
    37. Bugoro, H, Cooper, RD, Butafa, C, Iro鈥檕fa, C, Mackenzie, DO, Chen, CC, Russell, TL (2011) Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination. Malar J 10: pp. 133 CrossRef
    38. Russell, TL, Govella, NJ, Azizi, S, Drakeley, CJ, Kachur, SP, Killeen, GF (2011) Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J 10: pp. 80 CrossRef
    39. Kiswewski, AE, Mellinger, A, Spielman, A, Malaney, P, Sachs, SE, Sachs, J (2004) A global index representing the stability of malaria transmission. Am J Trop Med Hyg 70: pp. 486-498
    40. Saul, A (2003) Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar J 2: pp. 32 CrossRef
    41. Saul, AJ, Graves, PM, Kay, BH (1990) A cyclical feeding model for pathogen transmission and its application to determine vectorial capacity from vector infection rates. J Appl Ecol 27: pp. 123-133 CrossRef
    42. Killeen, GF, Seyoum, A, Knols, BGJ (2004) Rationalizing historical successes of malaria control in Africa in terms of mosquito resource availability management. Am J Trop Med Hyg 71: pp. 87-93
    43. Lengeler, C (2004) Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev.
    44. Clements, AN (1992) Development, Nutrition and Reproduction. The Biology of Mosquitoes. Volume 1. Chapman & Hall, London
    45. Beier, JC (1996) Frequent blood-feeding and restrictive sugar-feeding behavior enhance the malaria vector potential of Anopheles gambiae s.l. and An. funestus (Diptera:Culicidae) in western Kenya. J Med Entomol 33: pp. 613-618
    46. Achee, NL, Bangs, MJ, Farlow, R, Killeen, GF, Lindsay, S, Logan, JG, Moore, SJ, Rowland, M, Sweeney, K, Torr, SJ, Zwiebel, LJ, Grieco, JP (2012) Spatial repellents: from discovery and development to evidence-based validation. Malar J 11: pp. 164 CrossRef
    47. Kambris, Z, Blagborough, AM, Pinto, SB, Blagrove, MSC, Godfray, HCJ, Sinden, RE, Sinkins, SP (2010) Wolbachia stimulates immune gene expression and inhibits Plasmodium development in Anopheles gambiae. PLoS Pathog 6: pp. e1001143 CrossRef
    48. Thomas, MB, Read, AF (2007) Can fungal biopesticides control malaria?. Nat Rev Microbiol 5: pp. 377-383 CrossRef
    49. Devine, GJ, Perea, EZ, Killeen, GF, Stancil, JD, Clark, SJ, Morrison, AC (2009) Autodissemination of an insecticide by adult mosquitoes drammatically amplifies lethal coverage of their aquatic habitats. Proc Natl Acad Sci U S A 106: pp. 11530-11534 CrossRef
    50. Harris, AF, McKemey, AR, Nimmo, D, Curtis, Z, Black, I, Morgan, SA, Oviedo, MN, Lacroix, R, Naish, N, Morrison, NI, Collado, A, Stevenson, J, Scaife, S, Dafa鈥檃lla, T, Fu, G, Phillips, C, Miles, A, Raduan, N, Kelly, N, Beech, C, Donnelly, CA, Petrie, WD, Alphey, L (2012) Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol 30: pp. 828-830 CrossRef
    51. Killeen, GF, Okumu, FO, N鈥橤uessan, R, Coosemans, M, Adeogun, A, Awolola, S, Etang, J, Dabir茅, RK, Corbel, V (2011) The importance of considering community-level effects when selecting insecticidal malaria vector products. Parasit Vectors 4: pp. 160 CrossRef
    52. Silver, JB, Service, MW (2008) Mosquito Ecology: Field Sampling Methods. Springer, Dordrecht, the Netherlands CrossRef
    53. Gillies, MT (1958) A modified technique for age grading populations of Anopheles gambiae. Ann Trop Med Parasitol 58: pp. 261-273
    54. Gillies, MT, Wilkes, TJ (1965) A study of the age-composition of populations of Anopheles gambiae Giles and A. funestus Giles in North-Eastern Tanzania. Bull Entomol Res 56: pp. 237-262 CrossRef
    55. Govella, NJ, Chaki, P, Mpangile, JM, Killeen, GF (2011) Monitoring mosquitoes in urban Dar es Salaam: Evaluation of resting boxes, window exit traps, CDC light traps,Ifakara tent traps and human landing catches. Parasit Vectors 4: pp. 40 CrossRef
    56. Sikaala, CH, Killeen, GF, Chanda, J, Chinula, D, Miller, J, Russell, TL, Seyoum, A (2013) Evaluation of alternative mosquito sampling methods for malaria vectors in lowland south-east Zambia. Parasit Vectors 6: pp. 91 CrossRef
    57. Wong, J, Bayoh, MN, Olang, G, Killeen, GF, Hamel, MJ, Vulule, JM, Gimnig, JE (2013) Standardizing operational vector sampling techniques for measuring malaria transmission intensity: Evaluation of six mosquito collection methods in western Kenya. Malar J 12: pp. 143 CrossRef
    58. Smith, DL, McKenzie, FE, Snow, RW, Hay, SI (2007) Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol 5: pp. e42 CrossRef
    59. Smith, DL, Dushoff, J, Snow, RW, Hay, SI (2005) The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature 438: pp. 492-495 CrossRef
    60. Smith, DL, Hay, SI (2009) Endemicity response timelines for Plasmodium falciparum elimination. Malar J 8: pp. 87 CrossRef
    61. Smith, TA, Maire, N, Dietz, K, Killeen, GF, Vounatsou, P, Molineaux, L, Tanner, M (2006) Relationship between entomologic inoculation rate and the force of infection for Plasmodium falciparum malaria. Am J Trop Med Hyg 75: pp. 11-18
    62. Killeen, GF, Seyoum, A, Gimnig, JE, Stevenson, JC, Drakeley, CJ, Chitnis, N (2014) Made-to-measure malaria vector control strategies: rational design based on insecticide properties and coverage of blood resources for mosquitoes. Malar J 13: pp. 146 CrossRef
    63. Rowland, M, Durrani, N, Kenward, M, Mohammed, N, Urahman, H, Hewitt, S (2001) Control of malaria in Pakistan by applying deltamethrin insecticide to cattle: a community-randomised trial. Lancet 357: pp. 1837-1841 CrossRef
    64. Okumu, FO, Killeen, GF, Ogoma, SB, Biswaro, L, Smallegange, RC, Mbeyela, E, Titus, E, Munk, C, Ngonyani, H, Takken, W, Mshinda, H, Mukabana, WR, Moore, SJ (2010) Development and field evaluation of a mosquito lure that is more attractive than humans. PLoS One 5: pp. e8591 CrossRef
    65. Gu, W, Muller, G, Schlein, Y, Novak, RJ, Beier, JC (2011) Natural plant sugar sources of Anopheles mosquitoes strongly impact malaria transmission potential. PLoS One 6: pp. e15996 CrossRef
    66. Huestis, DL, Yaro, AS, Traore, AI, Adamou, A, Kassogue, Y, Diallo, M, Timbine, S, Dao, A, Lehmann, T (2011) Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village. J Exp Biol 214: pp. 2345-2353 CrossRef
    67. Marshall, JM, White, MT, Ghani, AC, Schlein, Y, Muller, GC, Beier, JC (2013) Quantifying the mosquito鈥檚 sweet tooth: modelling the effectiveness of attractive toxic sugar baits (ATSB) for malaria vector control. Malar J 12: pp. 291 CrossRef
    68. Nyasembe, VO, Teal, PE, Sawa, P, Tumlinson, JH, Borgemeister, C, Torto, B (2014) Plasmodium falciparum infection increases Anopheles gambiae attraction to nectar sources and sugar uptake. Curr Biol 24: pp. 217-221 CrossRef
    69. Messenger, LA, Matias, A, Manana, AN, Stiles-Ocran, JB, Knowles, S, Boakye, DA, Coulibaly, MB, Larsen, M-L, Traor茅, AS, Diallo, B, Konat茅, M, Guindo, A, Traor茅, SF, Mulder, CEG, Le, H, Kleinschmidt, I, Rowland, M (2012) Multicentre studies of insecticide-treated durable wall lining in Africa and South-East Asia: entomological efficacy and household acceptability during one year of field use. Malar J 11: pp. 358 CrossRef
    70. Maia, MF, Robinson, A, John, AN, Mgando, J, Simfukwe, E, Moore, SJ (2011) Comparison of the CDC Backpack aspirator and the Prokopack aspirator for sampling indoor- and outdoor-resting mosquitoes in southern Tanzania. Parasit Vectors 4: pp. 124 CrossRef
    World Malaria Report 2013. World Health Organization, Geneva
    71. Graham, K, Rehman, H, Ahmad, M, Kamal, M, Khan, I, Rowland, M (2004) Tents pre-treated with insecticide for malaria control in refugee camps: an entomological evaluation. Malar J 3: pp. 25 CrossRef
    72. Burns, M, Rowland, M, N鈥檊uessan, R, Carneiro, I, Beeche, A, Ruiz, SS, Kamara, S, Takken, W, Carnevale, P, Allan, R (2012) Insecticide-treated plastic sheeting for emergency malaria prevention and shelter among displaced populations: an observational cohort study in a refugee setting in Sierra Leone. Am J Trop Med Hyg 87: pp. 242-250 CrossRef
    73. Mittal, PK, Sreehari, U, Razdan, RK, Dash, AP (2012) Evaluation of the impact of ZeroFly庐, an insecticide incorporated plastic sheeting on malaria incidence in two temporary labour shelters in India. J Vector Borne Dis 48: pp. 138-143
    74. Diabate, A, Yaro, AS, Dao, A, Diallo, M, Huestis, DL, Lehmann, T (2011) Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol Biol 11: pp. 184 CrossRef
    75. Butail, S, Manoukis, N, Diallo, M, Ribeiro, JM, Lehmann, T, Paley, DA (2012) Reconstructing the flight kinematics of swarming and mating in wild mosquitoes. J R Soc Interface 9: pp. 2624-2638 CrossRef
    76. Harris, C, Kihonda, J, Lwetoijera, D, Dongus, S, Devine, G, Majambere, S (2011) A simple and efficient tool for trapping gravid Anopheles at breeding sites. Parasit Vectors 4: pp. 125 CrossRef
    77. Alcaide, M, Rico, C, Ruiz, S, Soriguer, R, Munoz, J, Figuerola, J (2009) Disentangling vector-borne transmission networks: a universal DNA barcoding method to identify vertebrate hosts from arthropod bloodmeals. PLoS One 4: pp. e7092 CrossRef
    78. Fornadel, CM, Norris, DE (2008) Increased endophily by the malaria vector Anopheles arabiensis in southern Zambia and identification of digested blood meals. Am J Trop Med Hyg 79: pp. 876-880
    79. Junnila, A, Muller, GC, Schlein, Y (2010) Species identification of plant tissues from the gut of Anopheles sergentii by DNA analysis. Acta Trop 115: pp. 227-233 CrossRef
    80. Manda, H, Gouagna, LC, Nyandat, E, Kabiru, EW, Jackson, RR, Foster, WA, Githure, JI, Beier, JC, Hassanali, A (2007) Discriminative feeding behaviour of Anopheles gambiae s.s. on endemic plants in western Kenya. Med Vet Entomol 21: pp. 103-111 CrossRef
    81. Hagler, JR, Jackson, CG (2001) Methods for marking insects: current techniques and future prospects. Annu Rev Entomol 46: pp. 511-543 CrossRef
    82. Vontas, J, Moore, SJ, Kleinschmidt, I, Ranson, H, Lindsay, SW, Lengeler, C, Hamon, N, McLean, T, Hemingway, J (2014) Framework for rapid assessment and adoption of new vector control tools. Trend Parasitol 30: pp. 191-204 CrossRef
    83. Dugassa, S, Lindh, JM, Torr, SJ, Oyieke, F, Lindsay, SW, Fillinger, U (2012) Electric nets and sticky materials for analysing oviposition behaviour of gravid malaria vectors. Malar J 11: pp. 374 CrossRef
    84. Majambere, S, Massue, DJ, Mlacha, Y, Govella, NJ, Magesa, SM, Killeen, GF (2013) Advantages and limitations of commercially available electrocuting grids for studying mosquito behaviour. Parasit Vectors 6: pp. 53 CrossRef
    85. Torr, SJ, Della Torre, A, Calzetta, M, Costantini, C, Vale, GA (2008) Towards a fuller understanding of mosquito behaviour: use of electrocuting grids to compare the odour-orientated responses of Anopheles arabiensis and An. quadriannulatus in the field.. Med Vet Entomol 22: pp. 93-108 CrossRef
    86. M眉ller, GC, Beier, JC, Traore, SF, Toure, MB, Traore, MM, Bah, S, Doumbia, S, Schlein, Y (2010) Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods. Malar J 9: pp. 262 CrossRef
    87. Mascari, TM, Stout, RW, Clark, JW, Gordon, SW, Bast, JD, Foil, LD (2013) Insecticide-treated rodent baits for sand fly control. Pestic Biochem Physiol 106: pp. 113-117 CrossRef
    88. Mascari, TM, Hanafi, HA, Jackson, RE, Ouahabi, S, Ameur, B, Faraj, C, Obenauer, PJ, Diclaro, JW, Foil, LD (2013) Ecological and control techniques for sand flies (Diptera: Psychodidae) associated with rodent reservoirs of leishmaniasis. PLoS Negl Trop Dis 7: pp. e2434 CrossRef
    89. Killeen, GF, Knols, BG, Gu, W (2003) Taking malaria transmission out of the bottle: implications of mosquito dispersal for vector-control interventions. Lancet Infect Dis 3: pp. 297-303 CrossRef
    90. Service, MW (1997) Mosquito (Diptera: Culicidae) dispersal-the long and short of it. J Med Entomol 34: pp. 579-588
    91. Hawley, WA, Phillips-Howard, PA, Ter Kuile, FO, Terlouw, DJ, Vulule, JM, Ombok, M, Nahlen, BL, Gimnig, JE, Kariuki, SK, Kolczak, MS, Hightower, AW (2003) Community-wide effects of permethrin-treated bednets on child mortality and malaria morbidity in western Kenya. Am J Trop Med Hyg 68: pp. 121-127
    Global Strategic Framework for Integrated Vector Management. World Health Organization, Geneva
  • 刊物主题:Parasitology; Infectious Diseases; Tropical Medicine;
  • 出版者:BioMed Central
  • ISSN:1475-2875
文摘
Background Eliminating malaria requires vector control interventions that dramatically reduce adult mosquito population densities and survival rates. Indoor applications of insecticidal nets and sprays are effective against an important minority of mosquito species that rely heavily upon human blood and habitations for survival. However, complementary approaches are needed to tackle a broader diversity of less human-specialized vectors by killing them at other resource targets. Methods Impacts of strategies that target insecticides to humans or animals can be rationalized in terms of biological coverage of blood resources, quantified as proportional coverage of all blood resources mosquito vectors utilize. Here, this concept is adapted to enable impact prediction for diverse vector control strategies based on measurements of utilization rates for any definable, targetable resource subset, even if that overall resource is not quantifiable. Results The usefulness of this approach is illustrated by deriving utilization rate estimates for various blood, resting site, and sugar resource subsets from existing entomological survey data. Reported impacts of insecticidal nets upon human-feeding vectors, and insecticide-treated livestock upon animal-feeding vectors, are approximately consistent with model predictions based on measured utilization rates for those human and animal blood resource subsets. Utilization rates for artificial sugar baits compare well with blood resources, and are consistent with observed impact when insecticide is added. While existing data was used to indirectly measure utilization rates for a variety of resting site subsets, by comparison with measured rates of blood resource utilization in the same settings, current techniques for capturing resting mosquitoes underestimate this quantity, and reliance upon complex models with numerous input parameters may limit the applicability of this approach. Conclusions While blood and sugar consumption can be readily quantified using existing methods for detecting natural markers or artificial tracers, improved techniques for labelling mosquitoes, or other arthropod pathogen vectors, will be required to assess vector control measures which target them when they utilize non-nutritional resources such as resting, oviposition, and mating sites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700