Adsorption and desorption of selenium by two non-living biomasses of aquatic weeds at dynamic conditions
详细信息    查看全文
  • 作者:Carmen Evelina Rodríguez-Martínez…
  • 关键词:Selenium ; Eichhornia crassipes ; Lemna minor ; Non ; living biomasses ; Adsorption–desorption ; Dynamic conditions
  • 刊名:Clean Technologies and Environmental Policy
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:18
  • 期:1
  • 页码:33-44
  • 全文大小:714 KB
  • 参考文献:Aksu Z, Gönen F (2004) Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem 39:599–613CrossRef
    Alpana S, Kumar D, Gaur JP (2012) Continuous metal removal from solution and industrial effluents using Spirogyra biomass-packed column reactor. Water Res 46:779–788CrossRef
    Alvarado-Rodríguez CE, Rodríguez-Martínez E, Klapp-Escribano J, Duarte-Pérez R, Olguín MT, Aguilera-Alvarado AF, Cano-Aguilera I, González-Acevedo ZI (2013) Simulation of breakthrough curves of selenium absorbed in two biomass filters using a dispersion and sorption model. Use for a hypothetical case. Mexican J of Phys 59:258–265
    Amarasinghe BMWPK, Williams RA (2007) Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J 132:299–309CrossRef
    Bleiman N, Mishael YG (2010) Selenium removal from drinking water by adsorption to chitosan-clay composites and oxides: batch and column tests. J Hazard Mater 183:590–595CrossRef
    Bunluesin S, Kruatrachue M, Pokethitiyook P, Upatham S, Lanza GR (2007) Batch and continuous packed column studies of cadmium biosorption by Hydrilla verticalla biomass. J Biosci Bioeng 103(6):509–513CrossRef
    Charumathi D, Das N (2012) Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilized dead C. tropicalis. Desalin 285:22–30CrossRef
    Chattopadhyay S, Fimmen RL, Yates BJ, Lal V, Randall P (2012) Phytoremediation of mercury- and methyl mercury-contaminated sediments by water hyacinth (Eichhornia crassipes). Int J Phytoremediat 14(2):142–161CrossRef
    Chen M, Yang T, Wang J (2009) Precipitate coating on cellulose fiber as sorption medium for selenium preconcentration and speciation with hydride generation atomic fluorescence spectrometry. Anal Chim Acta 631:74–79CrossRef
    Choudhary S, Goyal V, Singh S (2014) Removal of Cu(II) and Cr(VI) from aqueous solution using sorghum roots (S. bicolor): a kinetic and thermodynamic study. Clean Techn Environ Policy. doi:10.​1007/​s10098-014-0860-2
    Christophersen OA, Lyons G, Haug A, Steinnes E (2013) Chapter 16: Selenium. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability, 3rd edn. Springer Science + Business Media, Dordrecht, pp 429–463
    Chunming S, Suarez DL (2000) Selenate and selenite sorption on iron oxides: an infrared and electrophoretic study. Soil Sci Soc Am J 64:101–111CrossRef
    Damianovic MHRZ, Moraes EM, Zaiat M, Foresti E (2009) Pentachlorophenol (PCP) dechlorination in horizontal-flow anaerobic immobilized biomass (HAIB) reactors. Bioresour Technol 100:4361–4367CrossRef
    Dirilgen N, Inel Y (1994) Effects of zinc and copper on growth and metal accumulation in duckweed, Lemna minor. Bull Environ Contam Toxicol 53:442–449CrossRef
    Eisler R (2000) Selenium. Handbook of chemical risk assessment: health hazards to humans, plants and animals, 3rd edn. Lewis Publishers, CRC Press, Boca Raton, pp 1649–1705CrossRef
    El-Shafey EI (2007) Removal of Se(IV) from aqueous solution using sulphuric acid-treated peanut shell. J Environ Manag 84:620–627CrossRef
    González-Acevedo ZI, Olguín MT, Rodríguez-Martínez CE, Frías-Palos H (2012) Sorption and desorption processes of selenium (VI) using non-living biomasses of aquatic weeds in horizontal flow. Water Air Soil Pollut 223(7):4119–4128CrossRef
    Gutiérrez-Segura E, Colín-Cruz A, Solache-Ríos M, Fall C (2012) Removal of Denim Blue from aqueous solutions by inorganic adsorbents in a fixed-bed column. Water Air Soil Pollut 223:5505–5513CrossRef
    Haciyakupoglu S, Orucoglu E, Esen AN, Yusan S, Erenturk S (2014) Kinetic modeling of selenium (VI) adsorption for remediation of contaminated aquatic systems based on meso-scale experiments. Desalin Water Treat. doi:10.​1080/​19443994.​2014.​983980
    Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326:1–31CrossRef
    Han R, Wang Y, Zhao X, Wang Y, Xie F, Cheng J, Tang M (2009) Sorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves. Desalin 245:284–297CrossRef
    Hasan SH, Ranjan D, Talat M (2010) Agro-industrial waste “wheat bran” for the biosorptive remediation of selenium through continuous up-flow fixed-bed column. J Hazard Mater 181:1134–1142CrossRef
    Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92(10):2355–2388CrossRef
    Hurd NA, Sternberg SPK (2008) Bioremoval of aqueous lead using Lemna minor. Int J Phytoremed 10(4):278–288CrossRef
    Kandaswamy SB, SriKrishna PTR (2013) Fixed-bed column studies on biosorption of crystal violet from aqueous solution by Citrullus lanatus rind and Cyperus rotundus. Appl Water Sci 3:673–687CrossRef
    Khakpour H, Younesi H, Mohammadhosseini M (2014) Two-stage biosorption of selenium from aqueous solution using dried biomass of the baker´s yeast Saccharomyces cerevisiae. J Environ Chem Eng 2:532–542CrossRef
    Lakin HW (1973) Selenium in our environment. Adv Chem Series 123:96–111CrossRef
    Lao-Luque C, Solé M, Gamisans X, Valderrama C, Dorado AD (2014) Characteriation of Cr(III) removal from aqueous solutions y an immature coal (leonardite). Toward a better understanding of the phenomena involved. Clean Techn Environ Policy 16:127–136CrossRef
    Li X, Liu S, Na Z, Lu D, Liu Z (2013) Adsorption, concentration and recovery of aqueous heavy metal ions with the root powder of Eichhornia crassipes. Ecol Eng 60:160–166CrossRef
    Malkoc E, Nuhoglu Y (2006) Fixed bed studies for the sorption of chromium (VI) onto tea factory waste. Chem Eng Sci 61:4363–4372CrossRef
    Miretzky P, Muñoz C (2011) Enhanced metal removal from aqueous solution by Fenton ancivatedmacrophyte biomass. Desalin 271:20–28CrossRef
    Nettem K, Almusallam AS (2013) Equilibrium, kinetic and thermodynamic studies on the biosorption of selenium (IV) ions onto Geoderma Lucidum biomass. Sep Sci Technol 48(15):2293–2301CrossRef
    NOM-127-SSA1-1994. Mexican Official Norm “Environmental health, water use and human consumption—permissible limits of quality and treatments to be bound water for drinking water” www.​economia-noms.​gob.​mx/​noms/​detalleXNormaAct​ion.​do . consulted 01 Jan 2015
    Nurchi VM, Villaescusa I (2008) Agricultural biomasses as sorbents of some trace metals. Coord Chem Rev 252:1178–1188CrossRef
    Pilon-Smits E, Bañuelos GS, Parker DR (2014) Uptake, metabolism and volatilization of selenium by terrestrial plants, Chapter 6 in Chang AC, Silva DB (eds.) Salinity and drainage in San Joaquin Valley, California: science, technology and policy, global issues in water policy 5, DOI 10.​1007/​978-94-007-6851-2_​6 , Springer Science + Business Media Dodrecht
    Romero-Guzmán ET, Reyes-Gutiérrez LR, Marín Allende MJ, González-Acevedo ZI, Olguín-Gutiérrez MT (2013) Physicochemical properties of non-living water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor) and their influence on the As(V) adsorption processes. Chem Ecol 29(5):459–475CrossRef
    Sabbioni E, Polettini AE, Fortaner S, Farina M, Groppi F, Manenti S, Libralato G (2015) Uptake from water, internal distribution and bioaccumulation of selenium in Scenedesmus obliquus, Unio mancus and Rattus norvegicus: Part B. Bull Environ Contam Toxicol 94:90–95CrossRef
    Saha UK, Liu C, Kozak LM, Huang PM (2004) Kinetics of selenite adsorption on hydroxyaluminium and hydroxyaluminosilicate – montmorillonite complexes. Soil Sci Soc Am J 68:1197–1209CrossRef
    Sandy T, DiSante C (2010) Review of available technologies for the removal of selenium from water. Final report prepared for North American Metals Council, CH2 M Hill Inc. USA
    Saygideger S, Gulnaz O, Istifli ES, Yucel N (2005) Adsorption of Cd(II) and Ni(II) ions by Lemna minor L.: effect of physicochemical environment. J Hazard Mater B126:96–104CrossRef
    Sekhula MM, Okonkwo JO, Zvinowanda CM, Agyei NN, Chaudhary AJ (2012) Fixed bed column adsorption of Cu(II) onto maize tassel-PVA beads. J Chem Eng Process Technol 3:2CrossRef
    Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66:1664–1666CrossRef
    Ungureanu G, Santos S, Boaventura R, Botelho C (2015) Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J Environ Manag 151:326–342CrossRef
    Uysal Y, Taner F (2009) Effect of pH, temperature and lead concentration on the bioremoval of lead from water using Lemna minor. Int J Phytoremed 11(7):591–608CrossRef
    Vogel M, Günter A, Rossberg A, Li B, Bernhard G, Raff J (2010) Biosorption of U(VI) by green algae Chlorella vulgaris in dependence of pH value and cell activity. Sci Total Environ 409:384–395CrossRef
    Wilson D, Del Valle M, Alegret S, Valderrama C, Florido A (2013) Simultaneous and automated monitoring of the multimetal biosorption processes by potentiometric sensor array and artificial neural network. Talanta 114:17–24CrossRef
    World Health Organization (2011) Selenium in drinking water—background document for development of WHO guideline for drinking water, report
    Zanaty RK, Wael HA, Nabawia MI (2013) Biosorption of Cu2+ by Eichhornia crassipes: physicochemical characterization, biosorption modeling and mechanism. J King Saud Univ-Sci 25:47–56CrossRef
    Zhang F, Wang X, Yin D, Peng B, Tan C, Liu Y, Tan X, Wu S (2015) Efficiency and mechanism of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichhornia crassipes). J Environ Manag 153:68–73CrossRef
  • 作者单位:Carmen Evelina Rodríguez-Martínez (1) (2)
    Zayre Ivonne González-Acevedo (1) (4)
    María Teresa Olguín (3)
    Hilda Frías-Palos (1)

    1. Departamento de Estudios del Ambiente, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, km. 36.5. La Marquesa Ocoyoacac, Apartado Postal 18-1027, México, D. F., Mexico
    2. Instituto Tecnológico de Toluca, Av. Tecnológico s/n, Ex-rancho La Virgen, C. P. 52140, Metepec, Mexico
    4. Center of Scientific Research and Higher Education at Ensenada, Baja California, Ensenada-Tijuana Road No. 3918, Playitas Zone, C. P. 22860, Ensenada, Baja California, Mexico
    3. Departamento de Química, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, km. 36.5. La Marquesa Ocoyoacac, Apartado Postal 18-1027, México, D. F., Mexico
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Industrial Chemistry and Chemical Engineering
    Industrial Pollution Prevention
    Environmental Economics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-9558
文摘
The adsorption and desorption of selenium by non-living biomasses of Eichhornia crassipes (Ec) and Lemna minor (Lm) at dynamic conditions were evaluated, in terms of: pH, flow direction, mass loading rate, and theoretical speciation. These biomasses are worldwide present in watersheds high in nutrients. The experimental adsorption data were fitted to Thomas Model to obtain the parameters which describe the dynamic process. The Se removal capacity of Ec was 0.3489 µg g−1 and for Lm 0.1855 µg g−1 at pH of 6 and initial selenium concentration of 0.02 mg L−1. For both systems, the vertical flow results are more efficient to remove Se and the horizontal flow is more efficient to recover Se from the Ec packed columns. The highest Se adsorption capacity of non-living biomass of Ec was when the mass loading rate (MLR) is 2.85 mL min−1 g−1. For Lm, a MLR of 1.33 mL min−1 g−1 was more efficient to adsorb and the less efficient to desorb Se, attributed to its natural swelling physical characteristic and the strong bounding of Se. Both biomasses have the capacity to buffer the pH of the solution, which promotes a species change from selenate (\({\text{SeO}}_{4}^{ - }\)) to selenite (\({{{\text{SeO}}_{3}^{2 - } } \mathord{\left/ {\vphantom {{{\text{SeO}}_{3}^{2 - } } {{\text{HSeO}}_{3}^{ - } }}} \right. \kern-0pt} {{\text{HSeO}}_{3}^{ - } }}\)) during the adsorption process. The data for Ec packed columns are in accordance with the Thomas Model, suggesting that the adsorption process is by ion exchange due to the hydroxide groups naturally present in the non-living biomasses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700