Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells
详细信息    查看全文
  • 作者:Jun Li (1)
    Wei Song (1)
    Guangjin Pan (2)
    Jun Zhou (1)

    1. Department of Oncology
    ; Shandong Provincial Hospital Affiliated to Shandong University ; No. 324 Jingwu Weiqi Road ; Jinan ; 250021 ; P.R. China
    2. Guangzhou Institutes of Biomedicine and Health
    ; Chinese Academy of Science ; 190 Kaiyuan Avenue ; Science Park ; Guangzhou ; 510530 ; P.R. China
  • 关键词:Induced pluripotent stem cells ; Tissue origin ; Approach ; Generation
  • 刊名:Journal of Hematology & Oncology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:7
  • 期:1
  • 全文大小:471 KB
  • 参考文献:1. Takahashi, K, Yamanaka, S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: pp. 663-676 CrossRef
    2. Takahashi, K, Tanabe, K, Ohnuki, M, Narita, M, Ichisaka, T, Tomoda, K, Yamanaka, S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: pp. 861-872 CrossRef
    3. Yu, J, Vodyanik, MA, Smuga-Otto, K, Antosiewicz-Bourget, J, Frane, JL, Tian, S, Nie, J, Jonsdottir, GA, Ruotti, V, Stewart, R, Slukvin, II, Thomson, JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318: pp. 1917-1920 CrossRef
    4. Watanabe, A, Yamada, Y, Yamanaka, S (2012) Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier. Phil Trans R Soc B 368: pp. 2012292 CrossRef
    5. Jaenisch, R, Young, R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132: pp. 567-582 CrossRef
    6. Spivakov, M, Fisher, AG (2007) Epigenetic signatures of stem-cell identity. Nat Rev Genet 8: pp. 263-271 CrossRef
    7. Mikkelsen, TS, Hanna, J, Zhang, X, Ku, M, Wernig, M, Schorderet, P, Bernstein, BE, Jaenisch, R, Lander, ES, Meissner, A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454: pp. 49-55 CrossRef
    8. Meshorer, E, Misteli, T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7: pp. 540-546 CrossRef
    9. Thomson, JA, Itskovitz-Eldor, J, Shapiro, SS, Waknitz, MA, Swiergiel, JJ, Marshall, VS, Jones, JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: pp. 1145-1147 CrossRef
    10. Imaizumi, Y, Okano, H (2014) Modeling human neurological disorders with induced pluripotent stem cells. J Neurochem 129: pp. 388-399 CrossRef
    11. Gorba, T, Conti, L (2013) Neural stem cells, as tools for drug discovery: novel platforms and approaches. Expert Opin Drug Discov 8: pp. 1083-1094 CrossRef
    12. Xu, D, TM, O, Shartava, A, Fowles, TC, Yang, J, Fink, LM, Ward, DC, Mihm, MC, Waner, M, Ma, Y (2011) Isolation, characterization, and in vitro propagation of infantile hemangioma stem cells and an in vivo mouse model. J Hematol Oncol 6: pp. 54-64 CrossRef
    13. Yang, J, Aguila, JR, Alipio, Z, Lai, R, Fink, LM, Ma, Y (2011) Enhanced self-renewal of hematopoietic stem/progenitor cells mediated by the stem cell gene Sall4. J Hematol Oncol. 6: pp. 38-51 CrossRef
    14. Takahashi, J (2013) Cell replacement therapy for Parkinson's disease using iPS cells. Rinsho Shinkeigaku 53: pp. 1009-1012 CrossRef
    15. Carpenter, L, Carr, C, Yang, CT, Stuckey, DJ, Clarke, K, Watt, SM (2012) Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells Dev 21: pp. 977-986 CrossRef
    16. Okita, K, Ichisaka, T, Yamanaka, S (2007) Generation of germ-line competent induced pluripotent stem cells. Nature 448: pp. 313-317 CrossRef
    17. Yamamoto, K, Okamura, A, Sanada, Y, Yakushijin, K, Matsuoka, H, Minami, H (2013) Micronuclei-associated MYC amplification in the form of double minute chromosomes in acute myeloid leukemia. Am J Hemato 88: pp. 717-718 CrossRef
    18. Okita, K, Yamanaka, S (2011) Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci 366: pp. 2198-2207 CrossRef
    19. Huangfu, D, Osafune, K, Maehr, R, Guo, W, Eijkelenboom, A, Chen, S, Muhlestein, W, Melton, DA (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology 26: pp. 1269-1275 CrossRef
    20. Liao, J, Cui, C, Chen, S, Ren, J, Chen, J, Gao, Y, Li, H, Jia, N, Cheng, L, Xiao, H, Xiao, L (2009) Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4: pp. 11-15 CrossRef
    21. Liu, H, Zhu, F, Yong, J, Zhang, P, Hou, P, Li, H, Jiang, W, Cai, J, Liu, M, Cui, K, Qu, X, Xiang, T, Lu, D, Chi, X, Gao, G, Ji, W, Ding, M, Deng, H (2008) Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3: pp. 587-590 CrossRef
    22. Esteban, MA, Xu, J, Yang, J, Peng, M, Qin, D, Li, W, Jiang, Z, Chen, J, Deng, K, Zhong, M, Cai, J, Lai, L, Pei, D (2009) Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284: pp. 17634-17640 CrossRef
    23. Shimada, H, Nakada, A, Hashimoto, Y, Shigeno, K, Shionoya, Y, Nakamura, T (2009) Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol Reprod Dev 77: pp. 2 CrossRef
    24. Honda, A, Hirose, M, Hatori, M, Matoba, S, Miyoshi, H, Inoue, K, Ogura, A (2010) Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine. J Biol Chem 285: pp. 31362-31369 CrossRef
    25. Nakagawa, M, Koyanagi, M, Tanabe, K, Takahashi, K, Ichisaka, T, Aoi, T, Okita, K, Mochiduki, Y, Takizawa, N, Yamanaka, S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology 26: pp. 101-106 CrossRef
    26. Huangfu, D, Maehr, R, Guo, W, Eijkelenboom, A, Snitow, M, Chen, AE, Melton, DA (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26: pp. 795-797 CrossRef
    27. Stadtfeld, M, Nagaya, M, Utikal, J, Weir, G, Hochedlinger, K (2008) Induced pluripotent stem cells generated without viral integration. Science 322: pp. 945-949 CrossRef
    28. Zhao, Y, Yin, X, Qin, H, Zhu, F, Liu, H, Yang, W, Zhang, Q, Xiang, C, Hou, P, Song, Z, Liu, Y, Yong, J, Zhang, P, Cai, J, Liu, M, Li, H, Li, Y, Qu, X, Cui, K, Zhang, W, Xiang, T, Wu, Y, Zhao, Y, Liu, C, Yu, C, Yuan, K, Lou, J, Ding, M, Deng, H (2008) Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell 3: pp. 475-479 CrossRef
    29. Carey, BW, Markoulaki, S, Hanna, J, Saha, K, Gao, Q, Mitalipova, M, Jaenisch, R (2009) Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A 106: pp. 157-162 CrossRef
    30. Hong, H, Takahashi, K, Ichisaka, T, Aoi, T, Kanagawa, O, Nakagawa, M, Okita, K, Yamanaka, S (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460: pp. 1132-1135 CrossRef
    31. Fusaki, N, Ban, H, Nishiyama, A, Saeki, K, Hasegawa, M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85: pp. 348-362 CrossRef
    32. Esteban, MA, Wang, T, Qin, B, Yang, J, Qin, D, Cai, J, Li, W, Weng, Z, Chen, J, Ni, S, Chen, K, Li, Y, Liu, X, Xu, J, Zhang, S, Li, F, He, W, Labuda, K, Song, Y, Peterbauer, A, Wolbank, S, Redl, H, Zhong, M, Cai, D, Zeng, L, Pei, D (2010) Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6: pp. 71-79 CrossRef
    33. Cai, J, Li, W, Su, H, Qin, D, Yang, J, Zhu, F, Xu, J, He, W, Guo, X, Labuda, K, Peterbauer, A, Wolbank, S, Zhong, M, Li, Z, Wu, W, So, KF, Redl, H, Zeng, L, Esteban, MA, Pei, D (2010) Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem 285: pp. 11227-11234 CrossRef
    34. Okita, K, Nakagawa, M, Hyenjong, H, Ichisaka, T, Yamanaka, S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322: pp. 949-953 CrossRef
    35. Yu, J, Hu, K, Smuga-Otto, K, Tian, S, Stewart, R, Slukvin, II, Thomson, JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324: pp. 797-801 CrossRef
    36. Zhou, H, Wu, S, Joo, JY, Zhu, S, Han, DW, Lin, T, Trauger, S, Bien, G, Yao, S, Zhu, Y, Siuzdak, G, Sch枚ler, HR, Duan, L, Ding, S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4: pp. 381-384 CrossRef
    37. Kim, D, Kim, CH, Moon, JI, Chung, YG, Chang, MY, Han, BS, Ko, S, Yang, E, Cha, KY, Lanza, R, Kim, KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4: pp. 472-476 CrossRef
    38. Warren, L, Manos, PD, Ahfeldt, T, Loh, YH, Li, H, Lau, F, Ebina, W, Mandal, PK, Smith, ZD, Meissner, A, Daley, GQ, Brack, AS, Collins, JJ, Cowan, C, Schlaeger, TM, Rossi, DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7: pp. 618-630 CrossRef
    39. Jia, F, Wilson, KD, Sun, N, Gupta, DM, Huang, M, Li, Z, Panetta, NJ, Chen, ZY, Robbins, RC, Kay, MA, Longaker, MT, Wu, JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7: pp. 197-199 CrossRef
    40. Hiratsuka, M, Uno, N, Ueda, K, Kurosaki, H, Imaoka, N, Kazuki, K, Ueno, E, Akakura, Y, Katoh, M, Osaki, M, Kazuki, Y, Nakagawa, M, Yamanaka, S, Oshimura, M (2011) Integrationfree iPS cells engineered using human artificial chromosome vectors. PLoS One 6: pp. e25961 CrossRef
    41. Hou, P, Li, Y, Zhang, X, Liu, C, Guan, J, Li, H, Zhao, T, Ye, J, Yang, W, Liu, K, Ge, J, Xu, J, Zhang, Q, Zhao, Y, Deng, H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341: pp. 651-654 CrossRef
    42. Sun, N, Panetta, NJ, Gupta, DM, Wilson, KD, Lee, A, Jia, F, Hu, S, Cherry, AM, Robbins, RC, Longaker, MT, Wu, JC (2009) Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci 106: pp. 15720-15725 CrossRef
    43. Gore, A, Li, Z, Fung, HL, Young, JE, Agarwal, S, Antosiewicz-Bourget, J, Canto, I, Giorgetti, A, Israel, MA, Kiskinis, E, Lee, JH, Loh, YH, Manos, PD, Montserrat, N, Panopoulos, AD, Ruiz, S, Wilbert, ML, Yu, J, Kirkness, EF, Izpisua Belmonte, JC, Rossi, DJ, Thomson, JA, Eggan, K, Daley, GQ, Goldstein, LS, Zhang, K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471: pp. 63-67 CrossRef
    44. Hussein, SM, Batada, NN, Vuoristo, S, Ching, RW, Autio, R, N盲rv盲, E, Ng, S, Sourour, M, H盲m盲l盲inen, R, Olsson, C, Lundin, K, Mikkola, M, Trokovic, R, Peitz, M, Br眉stle, O, Bazett-Jones, DP, Alitalo, K, Lahesmaa, R, Nagy, A, Otonkoski, T (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471: pp. 58-62 CrossRef
    45. Aasen, T, Raya, A, Barrero, MJ, Garreta, E, Consiglio, A, Gonzalez, F, Vassena, R, Bili膰, J, Pekarik, V, Tiscornia, G, Edel, M, Bou茅, S, Izpis煤a Belmonte, JC (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26: pp. 1276-1284 CrossRef
    46. Tsai, SY, Clavel, C, Kim, S, Ang, YS, Grisanti, L, Lee, DF, Kelley, K, Rendl, M (2010) Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells 28: pp. 221-228
    47. Loh, YH, Agarwal, S, Park, IH, Urbach, A, Huo, H, Heffner, GC, Kim, K, Miller, JD, Ng, K, Daley, GQ (2009) Generation of induced pluripotent stem cells from human blood. Blood 113: pp. 5476-5479 CrossRef
    48. Anderlini, P (2009) Effects and safety of granulocyte colony-stimulating factor in healthy volunteers. Curr Opin Hematol 16: pp. 35-40 CrossRef
    49. Okabe, M, Otsu, M, Ahn, DH, Kobayashi, T, Morita, Y, Wakiyama, Y, Onodera, M, Eto, K, Ema, H, Nakauchi, H (2009) Definitive proof for direct reprogramming of hematopoietic cells to pluripotency. Blood 114: pp. 1764-1767 CrossRef
    50. Haase, A, Olmer, R, Schwanke, K, Wunderlich, S, Merkert, S, Hess, C, Zweigerdt, R, Gruh, I, Meyer, J, Wagner, S, Maier, LS, Han, DW, Glage, S, Miller, K, Fischer, P, Sch枚ler, HR, Martin, U (2009) Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5: pp. 434-441 CrossRef
    51. Staerk, J, Dawlaty, MM, Gao, Q, Maetzel, D, Hanna, J, Sommer, CA, Mostoslavsky, G, Jaenisch, R (2010) Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 7: pp. 20-24 CrossRef
    52. Loh, YH, Hartung, O, Li, H, Guo, C, Sahalie, JM, Manos, PD, Urbach, A, Heffner, GC, Grskovic, M, Vigneault, F, Lensch, MW, Park, IH, Agarwal, S, Church, GM, Collins, JJ, Irion, S, Daley, GQ (2010) Reprogramming of T cells from human peripheral blood. Cell Stem Cell 7: pp. 15-19 CrossRef
    53. Zhou, T, Benda, C, Duzinger, S, Huang, Y, Li, X, Li, Y, Guo, X, Cao, G, Chen, S, Hao, L, Chan, YC, Ng, KM, Ho, JC, Wieser, M, Wu, J, Redl, H, Tse, HF, Grillari, J, Grillari-Voglauer, R, Pei, D, Esteban, MA (2011) Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol 22: pp. 1221-1228 CrossRef
    54. Wang, L, Wang, L, Huang, W, Su, H, Xue, Y, Su, Z, Liao, B, Wang, H, Bao, X, Qin, D, He, J, Wu, W, So, KF, Pan, G, Pei, D (2013) Generation of integration-free neural progenitor cells from cells in human urine. Nature Methods 10: pp. 84-89 CrossRef
    55. Belik, R, Follmann, W, Degen, GH, Roos, PH, Blaszkewicz, M, Knopf, HJ, Golka, K (2008) Improvements in culturing exfoliated urothelial cells in vitro from human urine. J Toxicol Environ Health A 71: pp. 923-929 CrossRef
    56. Hanna, J, Markoulaki, S, Schorderet, P, Carey, BW, Beard, C, Wernig, M, Creyghton, MP, Steine, EJ, Cassady, JP, Foreman, R, Lengner, CJ, Dausman, JA, Jaenisch, R (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133: pp. 250-264 CrossRef
    57. Giorgetti, A, Montserrat, N, Aasen, T, Gonzalez, F, Rodr铆guez-Piz脿, I, Vassena, R, Raya, A, Bou茅, S, Barrero, MJ, Corbella, BA, Torrabadella, M, Veiga, A, Izpisua Belmonte, JC (2009) Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 5: pp. 353-357 CrossRef
    58. Miyoshi, K, Tsuji, D, Kudoh, K, Satomura, K, Muto, T, Itoh, K, Noma, T (2010) Generation of human induced pluripotent stem cells from oral mucosa. J Biosci Bioeng 110: pp. 345-350 CrossRef
    59. Aoi, T, Yae, K, Nakagawa, M, Ichisaka, T, Okita, K, Takahashi, K, Chiba, T, Yamanaka, S (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321: pp. 699-702 CrossRef
    60. Stadtfeld, M, Brennand, K, Hochedlinger, K (2008) Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 18: pp. 890-894 CrossRef
    61. Ono, M, Hamada, Y, Horiuchi, Y, Matsuo-Takasaki, M, Imoto, Y, Satomi, K, Arinami, T, Hasegawa, M, Fujioka, T, Nakamura, Y, Noguchi, E (2012) Generation of induced pluripotent stem cells from human nasal epithelial cells using a Sendai virus vector. PLoS One 7: pp. e42855 CrossRef
    62. Tamaoki, N, Takahashi, K, Tanaka, T, Ichisaka, T, Aoki, H, Takeda-Kawaguchi, T, Iida, K, Kunisada, T, Shibata, T, Yamanaka, S, Tezuka, K (2010) Dental pulp cells for induced pluripotent stem cell banking. J Dent Res 89: pp. 773-778 CrossRef
    63. Kim, JB, Zaehres, H, Wu, G, Gentile, L, Ko, K, Sebastiano, V, Ara煤zo-Bravo, MJ, Ruau, D, Han, DW, Zenke, M, Sch枚ler, HR (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454: pp. 646-650 CrossRef
    64. Kim, JB, Sebastiano, V, Wu, G, Ara煤zo-Bravo, MJ, Sasse, P, Gentile, L, Ko, K, Ruau, D, Ehrich, M, Boom, D, Meyer, J, H眉bner, K, Bernemann, C, Ortmeier, C, Zenke, M, Fleischmann, BK, Zaehres, H, Sch枚ler, HR (2009) Oct4-Induced pluripotency in adult neural stem cells. Cell 136: pp. 411-419 CrossRef
    65. Qin, D, Gan, Y, Shao, K, Wang, H, Li, W, Wang, T, He, W, Xu, J, Zhang, Y, Kou, Z, Zeng, L, Sheng, G, Esteban, MA, Gao, S, Pei, D (2008) Mouse meningiocytes express Sox2 and yield high efficiency of chimeras after nuclear reprogramming with exogenous factors. J Biol Chem 283: pp. 33730-33735 CrossRef
    66. Utikal, J, Maherali, N, Kulalert, W, Hochedlinger, K (2009) Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122: pp. 3502-3510 CrossRef
    67. Wernig, M, Lengner, CJ, Hanna, J, Lodato, MA, Steine, E, Foreman, R, Staerk, J, Markoulaki, S, Jaenisch, R (2008) A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol 26: pp. 916-924 CrossRef
    68. Turker, MS (2002) Gene silencing in mammalian cells and the spread of DNA methylation. Oncogene 21: pp. 5388-5393 CrossRef
    69. Kim, K, Doi, A, Wen, B, Ng, K, Zhao, R, Cahan, P, Kim, J, Aryee, MJ, Ji, H, Ehrlich, LI, Yabuuchi, A, Takeuchi, A, Cunniff, KC, Hongguang, H, McKinney-Freeman, S, Naveiras, O, Yoon, TJ, Irizarry, RA, Jung, N, Seita, J, Hanna, J, Murakami, P, Jaenisch, R, Weissleder, R, Orkin, SH, Weissman, IL, Feinberg, AP, Daley, GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467: pp. 285-290 CrossRef
    70. Miura, K, Okada, Y, Aoi, T, Okada, A, Takahashi, K, Okita, K, Nakagawa, M, Koyanagi, M, Tanabe, K, Ohnuki, M, Ogawa, D, Ikeda, E, Okano, H, Yamanaka, S (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27: pp. 743-745 CrossRef
    71. Soldner, F, Hockemeyer, D, Beard, C, Gao, Q, Bell, GW, Cook, EG, Hargus, G, Blak, A, Cooper, O, Mitalipova, M, Isacson, O, Jaenisch, R (2009) Parkinson鈥檚 disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136: pp. 964-977 CrossRef
    72. Sommer, CA, Sommer, AG, Longmire, TA, Christodoulou, C, Thomas, DD, Gostissa, M, Alt, FW, Murphy, GJ, Kotton, DN, Mostoslavsky, G (2010) Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells 28: pp. 64-74
    73. Hochedlinger, K, Yamada, Y, Beard, C, Jaenisch, R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121: pp. 465-477 CrossRef
    74. Lyssiotis, CA, Foreman, RK, Staerk, J, Garcia, M, Mathur, D, Markoulaki, S, Hanna, J, Lairson, LL, Charette, BD, Bouchez, LC, Bollong, M, Kunick, C, Brinker, A, Cho, CY, Schultz, PG, Jaenisch, R (2009) Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci U S A 106: pp. 8912-8917 CrossRef
    75. Li, W, Zhou, H, Abujarour, R, Zhu, S, Young Joo, J, Lin, T, Hao, E, Sch枚ler, HR, Hayek, A, Ding, S (2009) Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27: pp. 2992-3000
    76. Staerk, J, Lyssiotis, CA, Medeiro, LA, Bollong, M, Foreman, RK, Zhu, S, Garcia, M, Gao, Q, Bouchez, LC, Lairson, LL, Charette, BD, Supekova, L, Janes, J, Brinker, A, Cho, CY, Jaenisch, R, Schultz, PG (2011) Pan-Src family kinase inhibitors replace Sox2 during the direct reprogramming of somatic cells. Angew Chem Int Ed Engl 50: pp. 5734-5736 CrossRef
    77. Li, Y, Zhang, Q, Yin, X (2011) Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Research 21: pp. 196-204 CrossRef
    78. Chang, CW, Lai, YS, Pawlik, KM, Liu, K, Sun, CW, Li, C, Schoeb, TR, Townes, TM (2009) Polycistronic lentiviral vector for 鈥渉it and run鈥?reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 27: pp. 1042-1049 CrossRef
    79. Sommer, CA, Stadtfeld, M, Murphy, GJ, Hochedlinger, K, Kotton, DN, Mostoslavsky, G (2009) Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27: pp. 543-549 CrossRef
    80. Gonzalez, F, Barragan Monasterio, M, Tiscornia, G, Montserrat Pulido, N, Vassena, R, Batlle Morera, L, Rodriguez Piza, I, Izpisua Belmonte, JC (2009) Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci U S A 22: pp. 8918-8922 CrossRef
    81. Papapetrou, EP, Sadelain, M (2011) Generation of transgene-free human induced pluripotent stem cells with an excisable single polycistronic vector. Nat Protoc 6: pp. 1251-1273 CrossRef
    82. Seki, T, Yuasa, S, Oda, M, Egashira, T, Yae, K, Kusumoto, D, Nakata, H, Tohyama, S, Hashimoto, H, Kodaira, M, Okada, Y, Seimiya, H, Fusaki, N, Hasegawa, M, Fukuda, K (2010) Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7: pp. 11-14 CrossRef
    83. Ban, H, Nishishita, N, Fusaki, N, Tabata, T, Saeki, K, Shikamura, M, Takada, N, Inoue, M, Hasegawa, M, Kawamata, S, Nishikawa, S (2011) Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A 108: pp. 14234-14239 CrossRef
    84. Jin, ZB, Okamoto, S, Xiang, P, Takahashi, M (2012) Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling. Stem Cells Transl Med 1: pp. 503-509 CrossRef
    85. Nishimura, K, Sano, M, Ohtaka, M, Furuta, B, Umemura, Y, Nakajima, Y, Ikehara, Y, Kobayashi, T, Segawa, H, Takayasu, S, Sato, H, Motomura, K, Uchida, E, Kanayasu-Toyoda, T, Asashima, M, Nakauchi, H, Yamaguchi, T, Nakanishi, M (2011) Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286: pp. 4760-4771 CrossRef
    86. Seki, T, Yuasa, S, Fukuda, K (2012) Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus. Nat Protoc 7: pp. 718-728 CrossRef
    87. Thibault, ST, Singer, MA, Miyazaki, WY, Milash, B, Dompe, NA, Singh, CM, Buchholz, R, Demsky, M, Fawcett, R, Francis-Lang, HL, Ryner, L, Cheung, LM, Chong, A, Erickson, C, Fisher, WW, Greer, K, Hartouni, SR, Howie, E, Jakkula, L, Joo, D, Killpack, K, Laufer, A, Mazzotta, J, Smith, RD, Stevens, LM, Stuber, C, Tan, LR, Ventura, R, Woo, A, Zakrajsek, I (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36: pp. 283-287 CrossRef
    88. Woltjen, K, Michael, IP, Mohseni, P, Desai, R, Mileikovsky, M, H盲m盲l盲inen, R, Cowling, R, Wang, W, Liu, P, Gertsenstein, M, Kaji, K, Sung, HK, Nagy, A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458: pp. 766-770 CrossRef
    89. Kaji, K, Norrby, K, Paca, A, Mileikovsky, M, Mohseni, P, Woltjen, K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458: pp. 771-775 CrossRef
    90. Okita, K, Hong, H, Takahashi, K, Yamanaka, S (2010) Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc 5: pp. 418-428 CrossRef
    91. Nanbo, A, Sugden, A, Sugden, B (2007) The coupling of synthesis and partitioning of EBV's plasmid replicon is revealed in live cells. Embo J 26: pp. 4252 CrossRef
    92. Chou, BK, Mali, P, Huang, X, Ye, Z, Dowey, SN, Resar, LM, Zou, C, Zhang, YA, Tong, J, Cheng, L (2011) Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21: pp. 518-529 CrossRef
    93. Yu, J, Chau, KF, Vodyanik, MA, Jiang, J, Jiang, Y (2011) Efficient feeder-free episomal reprogramming with small molecules. PLoS One 6: pp. e17557 CrossRef
    94. Hu, K, Yu, J, Suknuntha, K, Tian, S, Montgomery, K, Choi, KD, Stewart, R, Thomson, JA, Slukvin, II (2011) Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood 117: pp. e109-e119 CrossRef
    95. Okita, K, Matsumura, Y, Sato, Y, Okada, A, Morizane, A, Okamoto, S, Hong, H, Nakagawa, M, Tanabe, K, Tezuka, K, Shibata, T, Kunisada, T, Takahashi, M, Takahashi, J, Saji, H, Yamanaka, S (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8: pp. 409-412 CrossRef
    96. Mack, AA, Kroboth, S, Rajesh, D, Wang, WB (2011) Generation of induced pluripotent stem cells from CD34+ cells across blood drawn from multiple donors with non-integrating episomal vectors. PLoS One 6: pp. e27956 CrossRef
    97. Meng, X, Neises, A, Su, RJ, Payne, KJ, Ritter, L, Gridley, DS, Wang, J, Sheng, M, Lau, KH, Baylink, DJ, Zhang, XB (2012) Efficient reprogramming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone. Mol Ther 20: pp. 408-416 CrossRef
    98. Dowey, SN, Huang, X, Chou, BK, Ye, Z, Cheng, L (2012) Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc 7: pp. 2013-2021 CrossRef
    99. Okita, K, Yamakawa, T, Matsumura, Y, Sato, Y, Amano, N, Watanabe, A, Goshima, N, Yamanaka, S (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31: pp. 458-466 CrossRef
    100. Warren, L, Ni, Y, Wang, J, Guo, X (2012) Feeder-free derivation of human induced pluripotent stem cells with messenger RNA. Sci Rep 2: pp. 657 CrossRef
    101. Mandal, PK, Rossi, DJ (2013) Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat Protoc 8: pp. 568-582 CrossRef
    102. Narsinh, KH, Jia, F, Robbins, RC, Kay, MA, Longaker, MT, Wu, JC (2011) Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc 6: pp. 78-88 CrossRef
    103. Ren, X, Tahimic, CG, Katoh, M, Kurimasa, A, Inoue, T, Oshimura, M (2006) Human artificial chromosome vectors meet stem cells: new prospects for gene delivery. Stem Cell Rev 2: pp. 43-50
    104. Cao, J, Li, X, Lu, X, Zhang, C, Yu, H, Zhao, T (2014) Cells derived from iPSC can be immunogenic - yes or no?. Protein Cell 5: pp. 1-3 CrossRef
    105. Zhao, T, Zhang, ZN, Rong, Z, Xu, Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474: pp. 212-215 CrossRef
  • 刊物主题:Oncology; Hematology; Cancer Research;
  • 出版者:BioMed Central
  • ISSN:1756-8722
文摘
Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700