Lifetime estimation applying a kinetic model based on the generalized logistic function to biopolymers
详细信息    查看全文
  • 作者:Javier Tarrío-Saavedra ; Jorge López-Beceiro…
  • 关键词:Lifetime ; Scaffolds ; Thermogravimetric analysis ; Logistic function ; Kinetics ; Biopolymers
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:122
  • 期:3
  • 页码:1203-1212
  • 全文大小:1,087 KB
  • 参考文献:1.Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1-9.CrossRef
    2.ASTM E1641-07 Standard test method for decomposition kinetics by thermogravimetry, Annual Book of ASTM Standards, vol. 14.02, ASTM International, West Conshohocken, PA, 2007.
    3.ASTM E698-05 Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials, Annual Book of ASTM Standards, vol. 14.02, ASTM International, West Conshohocken, PA, 2005, p. 226.
    4.Prime RB, Bair HE, Vyazovkin S, Gallagher PK, Riga A. Thermogravimetric analysis (TGA). In: Menczel JD, Prime RB, editors. Thermal analysis of polymers Fundamentals and applications. San José: Wiley; 2009. p. 241-18.CrossRef
    5.Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702-.CrossRef
    6.Tarrío-Saavedra J, Naya S, López-Beceiro J, Zaragoza S, álvarez A, Quintela-Pita S, García-Sabán J. Degradation modelling of bio-polymers used as dental scaffolds. In: Natal Jorge RM, Reis Campos JC, Vaz MAP, Santos SM, Tavares JMRS, editors. Biodental engineering III, 51. London: CRC Press, Taylor & Francis Group; 2014. p. 281-.
    7.Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95-01.CrossRef
    8.López-Beceiro J, Gracia-Fernández C, Artiaga R. A kinetic model that fits nicely isothermal and non-isothermal bulk crystallizations of polymers from the melt. Eur Polym J. 2013;49:2233-6.CrossRef
    9.Rios-Fachal M, Gracia-Fernández C, López-Beceiro J, Gómez-Barreiro S, Tarrío-Saavedra J, Ponton A. Effect of nanotubes on the thermal stability of polystyrene. J Therm Anal Calorim. 2013;113:481-.CrossRef
    10.Prout EG, Tompkins FC. The thermal decomposition of potassium permanganate. Trans Faraday Soc. 1944;40:488-8.CrossRef
    11.Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5-4.CrossRef
    12.Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4:518-4.CrossRef
    13.Hoque ME, Yong LC, Ian P. Mathematical modeling on degradation of 3d tissue engineering scaffold materials. Regen Res. 2012;1(1):58-1.
    14.Pitt CG, Zhong-wei G. Modification of the rates of chain cleavage of poly (?-caprolactone) and related polyesters in the solid state. J Control Release. 1987;4:283-2.CrossRef
    15.Sandino C, Planell JA, Lacroix D. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J Biomech. 2008;41:1005-4.CrossRef
    16.Thermal analysis application brief. Estimation of polymer lifetime by TGA decomposition kinetics. TA Instrument technical note no 125. http://?www.?tainstruments.?com/?main.?aspx??id=-6&?n=-&?siteid=-1 . Accessed 20 Oct 2014.
    17.Kingsland SE. Modeling nature: episodes in the history of population ecology. 2nd ed. Chicago: University of Chicago Press; 1995.
    18.Román-Román P, Torres-Ruiz F. Modelling logistic growth by a new diffusion process: application to biological systems. Biosystems. 2012;110:9-1.CrossRef
    19.Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Clarifications regarding the use of model-fitting methods of kinetic analysis for determining the activation energy from a single non-isothermal curve. Chem Cent J. 2013;7:25.CrossRef
    20.López-Beceiro J, Pascual-Cosp J, Artiaga R, Tarrío-Saavedra J, Naya S. Thermal characterization of ammonium alum. J Therm Anal Calorim. 2010;104:127-0.CrossRef
    21.López-Beceiro J, Gracia-Fernández C, Gómez-Barreiro S, Castro-García S, Sánchez-Andújar M, Artiaga R. Kinetic study of the low temperature transformation of Co (HCOO) 3 [(CH3) 2NH2]. J Phys Chem C. 2012;116:1219-4.CrossRef
    22.Francisco-Fernández M, Tarrío-Saavedra J, Mallik A, Naya S. A comprehensive classification of wood from thermogravimetric curves. Chemom Intell Lab Syst. 2012;118:159-2.CrossRef
    23.Pato-Doldán B, Sánchez-Andújar M, Gómez-Aguirre LC, Yá?ez-Vilar S, Lopez-Beceiro J, Gracía-Fernandez C, et al. Near room temperature dielectric transition in the perovskite formate framework [(CH3) 2NH2][Mg (HCOO) 3]. Phys Chem Chem Phys. 2012;14:8498-01.CrossRef
    24.Tarrío-Saavedra J, Francisco-Fernández M, Naya S, López-Beceiro J, Gracia-Fernández C, Artiaga R. Wood identification using pressure DSC data: Wood identification from PDSC. J Chemom. 2013;. doi:10.-002/?cem.-561 .
    25.López-Beceiro J, Pascual-Cosp J, Artiaga R, Tarrío-Saavedra J, Naya S. Thermal characterization of ammonium alum. J Therm Anal Calorim. 2011;104:127-0.CrossRef
    26.López-Beceiro J, Gracia-Fernández C, Tarrío-Saavedra J, Gómez-Barreiro S, Artiaga R. Study of gypsum by PDSC. J Therm Anal Calorim. 2012;109:1177-3.CrossRef
    27.Ríos-Fachal M, Tarrío-Saavedra J, López-Beceiro J, Naya S, Artiaga R. Optimizing fitting parameters in Thermograv
  • 作者单位:Javier Tarrío-Saavedra (1)
    Jorge López-Beceiro (1)
    Ana álvarez (1)
    Salvador Naya (1)
    Sara Quintana-Pita (2)
    Santiago García-Pardo (2)
    Francisco Javier García-Sabán (2)

    1. Escola Politécnica Superior, Universidade da Coru?a, Ferrol, Spain
    2. Developbiosystem, A Coru?a, Spain
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
The aim of this work was to estimate the lifetime due thermal aging of polymers and even other materials using a new approach based on the application of a kinetic model based on the generalized logistic function. For this purpose, thermogravimetric analysis, including dynamic and isothermal tests, was performed for different formulations based on polylactic acid used in dental applications (scaffolds). In this work, lifetime is defined as the time passed for losing the 5 wt% of the mass corresponding to the first and main degradation process. The 5 mass% mass loss could be a critic parameter in manufacturing processes, in terms of economical profit and quality of the final product. The proposed model provides lifetime estimates of polymeric materials depending on the storage temperature. The present procedure permits to obtain lifetime estimates of materials characterized by more than one main degradation process, since they can be dis-overlapped using generalized logistic functions. Keywords Lifetime Scaffolds Thermogravimetric analysis Logistic function Kinetics Biopolymers

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700