Approaches to the fabrication of calcium phosphate-based porous materials for bone tissue regeneration
详细信息    查看全文
  • 作者:S. M. Barinov ; V. S. Komlev
  • 关键词:calcium phosphates ; scaffolds ; ceramics ; additive technologies ; three ; dimensional (3D) printing ; bone tissue regeneration
  • 刊名:Inorganic Materials
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:52
  • 期:4
  • 页码:339-346
  • 全文大小:1,568 KB
  • 参考文献:1.Hench, L.L. and Polak, J.M., Third-generation biomedical materials, Science, 2002, vol. 295, pp. 1014–1017.CrossRef
    2.Safronova, T.V. and Putlyaev, V.I., Medical inorganic materials research in Russia: calcium phosphate materials, Nanosist.: Fiz., Khim., Mat., 2013, vol. 4, no. 1, pp. 24–47.
    3.Veresov, A.G., Putlyaev, V.I., and Tret’yakov, Yu.D., Advances in calcium phosphate biomaterials, Ross. Khim. Zh., 2000, vol. 44, no. 6, pp. 32–46.
    4.Barinov, S.M. and Komlev, V.S., Biokeramika na osnove fosfatov kal’tsiya (Calcium Phosphate-Based Bioceramics), Moscow: Nauka, 2014.
    5.Barinov, S.M., Calcium-phosphate-based ceramic and composite materials for medical applications, Usp. Khim., 2010, vol. 10, no. 1, pp. 15–32.
    6.Barinov, S.M. and Komlev, V.S., Calcium Phosphate Based Bioceramics for Bone Tissue Engineering, Zurich: Trans Tech, 2008.
    7.Petrovskaya, T.S., Shakhov, V.P., Vereshchagin, V.I., and Ignatov, V.P., Biomaterialy i implantaty dlya travmatologii i ortopedii (Biomaterials and Implants for Traumatology and Orthopedics), Tomsk: Tomsk. Gos. Univ., 2011.
    8.Suchanek, W. and Yoshimura, M., Processing and properties of HA-based biomaterials for use as hard tissue replacement implants, J. Mater. Res. Soc., 1998, vol. 13, no. 1, pp. 94–103.CrossRef
    9.Lukin, E.S., Gorelik, E.I., Safina, M.N., et al., Bioactive high-porosity hydroxyapatite-based ceramics: applications in bone tissue engineering, Fundam. Osnovy Inzh. Nauk, 2006, vol. 1, pp. 166–171.
    10.Sarkisov, P.D., Stroganova, E.E., Mikhailenko, N.Yu., and Buchilin, N.V., Glass-based porous materials, Steklo Keram., 2008, no. 10, pp. 13–16.
    11.Belyakov, A.V., Lukin, E.S., Safronova, T.V., Safina, M.N., and Putlyaev, V.I., Calcium phosphate-based porous materials, Steklo Keram., 2008, no. 10, pp. 17–19.
    12.Slosarczyk, A., Stobierska, E., and Paszkiewicz, Z., Porous hydroxyapatite ceramics, J. Mater. Sci. Lett., 1999, no. 18, pp. 1163–1165.CrossRef
    13.Yamasaki, N., Kai, T., Nishioka, M., Yanagisawa, K., et al., Porous hydroxyapatite ceramics prepared by hydrothermal hot-pressing, J. Mater. Sci. Lett., 1990, no. 10, pp. 1150–1152.CrossRef
    14.Liu, D., Preparation and characterization of porous HA bioceramic via a slip-casting route, J. Ceram. Int., 1997, vol. 24, pp. 441–446.CrossRef
    15.Engin, N.O. and Tas, A.C., Preparation of porous Ca10(PO4)6(OH)2 and a-Ca3(PO4)2 bioceramics, J. Am. Ceram. Soc., 2000, no. 7, pp. 1581–1584.
    16.Sepulveda, P., Ortega, F.S., Innocentini, M.D.M., and Pandolfelli, V.C., Properties of highly porous hydroxyapatite obtained by the gel casting of foams, J. Am. Ceram. Soc., 2000, vol. 83, no. 12, pp. 3021–3024.CrossRef
    17.Guzman, I.Ya., Khimicheskaya tekhnologiya keramiki (Chemical Technology of Ceramics), Moscow: Stroimaterialy, 2003, p. 471.
    18.Komlev, V.S. and Barinov, S.M., Porous hydroxyapatite ceramics of bi-modal pore size distribution, J. Mater. Sci. Mater. Med., 2002, vol. 13, pp. 295–299.CrossRef
    19.Nakahira, A., Tamai, M., and Miki, S., Fracture behavior and biocompatibility evaluation of nyloninfiltrated porous hydroxyapatite, J. Mater. Sci. Mater. Med., 2002, vol. 37, pp. 4425–2230.CrossRef
    20.Nursen, K., Muharrem, T., and Feza, K., Fabrication and characterization of porous tricalcium phosphate ceramics, Ceram. Int., 2004, vol. 30, pp. 205–211.CrossRef
    21.Descamps, M., Hornez, J.C., and Leriche, A., Manufacture of hydroxyapatite beads for medical applications, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 369–375.CrossRef
    22.Mao, X., Wang, S., and Shimai, S., Porous ceramics with tri-modal pores prepared by foaming and starch consolidation, Ceram. Int., 2006, vol. 34, pp. 107–112.CrossRef
    23.Engin, N.O. and Tas, A.C., Manufacture of macroporous calcium hydroxyapatite bioceramics, J. Eur. Ceram. Soc., 1999, vol. 19, pp. 2569–2572.CrossRef
    24.Binner, G.P. and Reichert, J., Processing of hydroxyapatite ceramic foams, J. Mater. Sci. Mater. Med., 1996, vol. 31, pp. 5717–5723.CrossRef
    25.Pereira, M.M., Jones, J.R., Orefice, R.L., and Hench, L.L., Preparation of bioactive glass–polyvinyl alcohol hybrid foams by the sol–gel method, J. Mater. Sci. Mater. Med., 2005, vol. 16, pp. 1045–1050.CrossRef
    26.Hsu, Y.H., Turner, I.G., and Miles, A.W., Fabrication and mechanical testing of porous calcium phosphate bioceramic granules, J. Mater. Sci. Mater. Med., 2007, vol. 18, pp. 1931–1937.CrossRef
    27.Hsu, Y.H., Turner, I.G., and Miles, A.W., Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone, J. Mater. Sci. Mater. Med., 2007, vol. 18, pp. 2251–2256.CrossRef
    28.Miao, X., Tan, D.M., Li, J., Xiao, Y., and Crawford, R., Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid), Acta Biomater., 2008, vol. 4, pp. 638–645.CrossRef
    29.Smirnov, V.V., Goldberg, M.A., Shvorneva, L.I., Fadeeva, I.V., Shibaeva, T.V., and Barinov, S.M., Synthesis of composite biomaterials in the hydroxyapatite–calcite system, Dokl. Chem., 2010, vol. 432, part 1, pp. 151–154.CrossRef
    30.Leong, K.F., Cheah, C.M., and Chua, C.K., Solid free form fabrication of three-dimensional scaffolds for engineering replacement tissues and organs, Biomaterials, 2003, vol. 24, pp. 2363–2378.CrossRef
    31.Seitz, H., Rieder, W., Irsen, S., Leukers, B., and Tille, C., Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering, J. Biomed. Mater. Res. B, 2005, vol. 74, pp. 782–788.CrossRef
    32.Shanjani, Y., De Croos, J.N.A., Pilliar, R.M., Kandel, R.A., and Toyoserkani, E., Solid freeform fabrication of porous calcium polyphosphate structures for tissue engineering purposes, J. Biomed. Mater. Res. B, 2010, vol. 93, pp. 510–519.CrossRef
    33.Mikolajek, M., Friedrich, A., Bauer, W., and Binder, J.R., Requirements to ceramic suspensions for inkjet printing, Ceram. Forum Int., 2015, vol. 92, no. 3, pp. E25–E29.
    34.Fedotov, A.Yu., Komlev, V.S., Goldberg, M.A., Smirnov, V.V., Sviridova, I.K., Sergeeva, N.S., Kirsanova, V.A., Ievlev, V.M., and Barinov, S.M., Highporous composites in the bipolymer–calcite system for the use in tissue engineering, Dokl. Chem., 2011, vol. 437, part 1, pp. 72–74.CrossRef
    35.Fedotov, A.Yu., Smirnov, V.V., Fomin, A.S., Fadeeva, I.V., and Barinov, S.M., Porous chitosan matrices reinforced by bioactive calcium compounds, Dokl. Chem., 2008, vol. 423, part 2, pp.330–332.CrossRef
    36.Fadeeva, I.V., Barinov, S.M., Fedotov, A.Yu., and Komlev, V.S., Interactions of calcium phosphates with chitosan, Dokl. Chem., 2011, vol. 441, part 2, pp. 387–390.CrossRef
    37.Fedotov, A.Yu., Barinov, S.M., Fadeeva, I.V., Egorov, A.A., Petrakova, N.V., Usachev, M.A., and Komlev, V.S., Synthesis of calcium phosphates on chitosan macromolecules in the presence of amino acids, Dokl. Chem., 2013, vol. 451, part 2, pp. 207–210.CrossRef
    38.Fedotov, A.Yu., Komlev, V.S., Teterina, A.Yu., Barinov, S.M., and Fadeeva, I.V., Deformable calcium phosphate/chitosan bone cements, Materialovedenie, 2013, no. 5, pp. 44–48.
    39.Fedotov, A.Yu., Barinov, S.M., Teterina, A.Yu., Fadeeva, I.V., and Komlev, V.S., Composite bone cement in the calcium phosphates–chitosan system, Dokl. Chem., 2013, vol. 448, no. 2, pp. 68–70.CrossRef
    40.Teterina, A.Yu., Fedotov, A.Yu., Egorov, A.A., Barinov, S.M., and Komlev, V.S., Microstructure formation in porous calcium phosphate–chitosan bone cements, Inorg. Mater., 2015, vol. 51, no. 4, pp. 396–399.CrossRef
    41.Popov, V.K., Komlev, V.S., and Chichkov, B.N., Calcium phosphate blossom for bone tissue. 3D printing scaffolds, Mater. Today, 2014, vol. 2, pp. 96–97.CrossRef
    42.Komlev, V.S., Popov, V.K., Mironov, A.V., Fedotov, A.Yu., Teterina, A.Yu., Smirnov, I.V., Bozo, I.Y., Rybko, V.A., and Deev, R.V., 3D printing of octacalcium phosphate bone substitutes, Frontiers Bioeng. Biotechnol., 2015. doi 10.3389/fbioe.2015.00081
  • 作者单位:S. M. Barinov (1)
    V. S. Komlev (1) (2)

    1. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskii pr. 49, Moscow, 119991, Russia
    2. Institute on Laser and Information Technologies, Russian Academy of Sciences, ul. Gubkina 3, Moscow, 140700, Russia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Inorganic Chemistry
    Industrial Chemistry and Chemical Engineering
    Materials Science
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3172
文摘
This paper reviews advances in the fabrication of calcium phosphate materials for injured bone tissue regeneration. We examine the key features of rapid prototyping for the fabrication of porous ceramic scaffolds with tailored architectures, the technology of biopolymer-based composite materials reinforced with calcium phosphate particles, and the fabrication of porous scaffolds via cement route.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700