Optimization of bone scaffold structures using experimental and numerical data
详细信息    查看全文
  • 作者:Przemysław Makowski ; Wacław Kuś
  • 刊名:Acta Mechanica
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:227
  • 期:1
  • 页码:139-149
  • 全文大小:2,757 KB
  • 参考文献:1.Fang Z., Yan C., Sun W., Shokoufandeh A., Regli W.: Homogenization of heterogeneous tissue scaffold: a comparison of mechanics, asymptotic homogenization, and finite element approach. J. Bionic Appl. Biomech. 2, 17–29 (2005)CrossRef
    2.Hollister S.J.: Porous scaffold design for tissue engineering. Nat. Mater. 4, 518–524 (2005)CrossRef
    3.Nowak, M.: Parallel Finite-Element Mesh Generation for Trabecular Bone Remodeling Simulation. Lecture notes of the ICB seminars: current trends in development of implantable tissue structures—120 Seminar of International Centre of Biocybernetic, (Warsaw, 2012), pp. 49–53
    4.Polak S.J., Rustom L.E., Genin G.M., Talcott M., Johnson A.J.W.: A mechanism for effective cell-seeding in rigid, microporous substrates. Acta Biomater. 8, 7977–7986 (2013)CrossRef
    5.Park S.H., Park D.S., Shin J.W., Kang Y.G., Kim H.K., Yoon T.R., Shin J.W.: Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA. J. Mater. Sci. Mater. Med. 23, 2671–2678 (2012)CrossRef
    6.Lin C.Y., Kikuchi N., Hollister S.J.: A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J. Biomech. 37, 623–636 (2004)CrossRef
    7.Van Cleynenbreugel T., Van Oosterwyck H., Sloten V.J., Schrooten J.: Trabecular bone scaffolding using a biomimetic approach. J. Mater. Sci. Mater. Med. 13, 1245–1249 (2002)CrossRef
    8.Kuś, W., Burczyński, T.: Parallel Bioinspired Algorithms in Optimization of Structures. Lecture Notes in Computational Sciences, vol. 4967, pp. 1285–1292
    9.Burczyński, T., Kuś, W.: Microstructure optimisation and identification in multi-scale modelling. Comput. Methods Appl. Sci. 14, 169–181 (2009)
    10.Khalil S., Nam J., Sun W.: Multi-nozzle deposition for construction of 3D biopolymer tissue scaff olds. Rapid Prototyp. J. 11, 9–17 (2005)CrossRef
    11.Zein, I., Hutmacher, D., Tan, K., Teoh, S.: Fused deposition modelling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185 (2002)
    12.Lotz J.C., Gerhart T.N., Hayes W.C.: Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J. Comput. Assist. Tomogr. 14, 107–114 (1990)CrossRef
    13.Rho J., Hobatho M., Ashman R.: Relations of mechanical properties to density and CT number in human bone. Med. Eng. Phys. 17, 347–355 (1995)CrossRef
    14.Burczyński T., Kuś W., Brodacka A.: Multiscale modeling of osseous tissues. J. Theor. Appl. Mech. 48, 855–870 (2010)
    15.Ptaszny J., Fedeliński P., Dziatkiewicz G.: Boundary element method modelling of nanocomposites. Int. J. Multiscale Comput. Eng. 12, 33–43 (2014)CrossRef
    16.Makowski, P., John, A., Kuś, W., Kokot, G.: Multiscale Modeling of the Simplified Trabecular Bone Structure. Mechanika 2013. In: Proceedings of the 18th international conference, Kaunas, Lithuania, pp. 156–161 (2013)
    17.Madej Ł., Mrozek A., Kuś W., Burczyński T., Pietrzyk M.: Concurrent and upscaling methods in multi scale modelling—case studies. Comput. Met. Mat. Sci. 8, 1–15 (2008)
    18.Biot M.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)MATH CrossRef
    19.Hill R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)MATH CrossRef
    20.Hashin Z.: Theory of mechanical behavior of heterogeneous media. Appl. Mech. Rev. 17, 1–9 (1964)
    21.Kabel J., Rietbergen B., Dalstra M., Odgaard A., Huiskes R.: The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. J. Biomech. 32, 673–680 (1999)CrossRef
    22.Cyganik Ł., Binkowski M., Kokot G., Rusin T., Popik P., Bolechała F., Nowak R., Wróbel Z., John A.: Prediction of Young’s modulus of trabeculae in microscale using macro-scale’s relationships between bone density and mechanical properties. J. Mech. Behav. Biomed. Mater. 36, 120–134 (2014)CrossRef
    23.Makowski, P., Kuś, W.: Trabecular bone numerical homogenization with the use of buffer zone. Comput. Assist. Methods Eng. Sci. 21, 113–121 (2014)
    24.Michalewicz Z.: Genetic algorithms + data structures = evolutionary algorithms. Springer, Berlin (1996)CrossRef
    25.Kuś W.: Grid-enabled evolutionary algorithm application in the mechanical optimization problems. Eng. Appl. Artif. Intell. 20, 629–636 (2007)MathSciNet CrossRef
  • 作者单位:Przemysław Makowski (1)
    Wacław Kuś (1)

    1. Institute of Computational Mechanics and Engineering, Silesian University of Technology, Gliwice, Poland
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Mechanics, Fluids and Thermodynamics
    Continuum Mechanics and Mechanics of Materials
    Structural Mechanics
    Vibration, Dynamical Systems and Control
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Wien
  • ISSN:1619-6937
文摘
Optimization of bone scaffold structures is performed on the basis of homogenized orthotropic elastic properties of trabecular bone tissue and three-scale numerical model. The orthotropic effective material properties are calculated using a finite element method numerical model of bone microstructure with numerical homogenization algorithm and serve as a template of surgically removed bone tissue. The evolutionary algorithm is used to optimize patient-specific, periodic structure of the bone scaffold, possessing parameters similar to the removed bone and so allowing the bone tissue to heal and rebuild faster. The proposed methodology can be used to design bone scaffolds manufactured from biodegradable biopolymers using fused deposition modeling methods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700