Polyhydroxyalkanoates: Current applications in the medical field
详细信息    查看全文
  • 作者:Iftikhar Ali ; Nazia Jamil
  • 关键词:Biopolymers ; polyhydroxyalkanoates ; biocompatibility ; medical implantations
  • 刊名:Frontiers in Biology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 页码:19-27
  • 全文大小:341 KB
  • 参考文献:Bao G, Mitragotri S, Tong S (2013). Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng, 15: 253–282CrossRef PubMed
    Basnett P, Ching K Y, Stolz M, Knowles J C, Boccaccini A R, Smith C, Locke I C, Keshavarz T, Roy I (2013). Novel Poly (3-hydroxyoctanoate)/Poly (3-hydroxybutyrate) blends for medical applications. Reactive and Functional Polymers, 73(10): 1340–1348CrossRef
    Bennett R G (1988). Selection of wound closure materials. J Am Acad Dermatol, 18(4 Pt 1): 619–637CrossRef PubMed
    Borkenhagen M, Stoll R C, Neuenschwander P, Suter UW, Aebischer P (1998). In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel. Biomaterials, 19(23): 2155–2165CrossRef PubMed
    Brigham C J, Sinskey A J (2012). Applications of polyhydroxyalkanoates in the medical industry. Int J Biotechnol Wellness Ind, 1: 52–60
    Chen G Q, Wu Q (2005). The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 26(33): 6565–6578CrossRef PubMed
    Chen Q, Liang S, Thouas G A (2013). Elastomeric biomaterials for tissue engineering. Prog Polym Sci, 38(3-4): 584–671CrossRef
    Chen W, Tong Y W (2012). PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization. Acta Biomater, 8(2): 540–548CrossRef PubMed
    Chuah J A, Yamada M, Taguchi S, Sudesh K, Doi Y, Numata K (2013). Biosynthesis and characterization of polyhydroxyalkanoate containing 5-hydroxyvalerate units: Effects of 5HV units on biodegradability, cytotoxicity, mechanical and thermal properties. Polym Degrad Stabil, 98(1): 331–338CrossRef
    Dinjaski N, Fernández-Gutiérrez M, Selvam S, Parra-Ruiz F J, Lehman S M, San Román J, García E, García J L, García A J, Prieto M A (2014). PHACOS, a functionalized bacterial polyester with bactericidal activity against methicillin-resistant Staphylococcus aureus. Biomaterials, 35(1): 14–24CrossRef PubMed PubMedCentral
    Doi Y, Kitamura S, Abe H (1995). Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 28(14): 4822–4828CrossRef
    Entholzner E, Mielke L, Pichlmeier R, Weber F, Schneck H (1995). [EEG changes during sedation with gamma-hydroxybutyric acid]. Anaesthesist, 44(5): 345–350CrossRef PubMed
    Freier T, Kunze C, Nischan C, Kramer S, Sternberg K, Sass M, Hopt U T, Schmitz K P (2002). In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials, 23(13): 2649–2657CrossRef PubMed
    Gardel M, Schwarz U (2010). Cell-substrate interactions. J Phys Condens Matter, 22(19): 190301CrossRef PubMed
    Geiger B, Spatz J P, Bershadsky A D (2009). Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol, 10(1): 21–33CrossRef PubMed
    Gogolewski S, Jovanovic M, Perren S M, Dillon J G, Hughes M K (1993). Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J Biomed Mater Res, 27(9): 1135–1148CrossRef PubMed
    Hazari A, Johansson-Ruden G, Junemo-Bostrom K, Ljungberg C, Terenghi G, Green C, Wiberg M (1999a) A new resorbable wraparound implant as an alternative nerve repair technique. Journal of Hand Surgery (British and European Volume) 24: 291–295CrossRef
    Hazari A, Wiberg M, Johansson-Rudén G, Green C, Terenghi G (1999b). A resorbable nerve conduit as an alternative to nerve autograft in nerve gap repair. Br J Plast Surg, 52(8): 653–657CrossRef PubMed
    He Y, Hu Z, Ren M, Ding C, Chen P, Gu Q, Wu Q (2013). Evaluation of PHBHHx and PHBV/PLA fibers used as medical sutures. J Mater Sci Mater Med, 25(2): 1–11CrossRef
    Hocking P, Marchessault R (1994). Biopolyesters Chemistry and Technology of BIODEGRADABLE POLymers. Blackie Academic & Professional, 48–96
    Hon L Q, Ganeshan A, Thomas S M, Warakaulle D, Jagdish J, Uberoi R (2009). Vascular closure devices: a comparative overview. Curr Probl Diagn Radiol, 38(1): 33–43CrossRef PubMed
    Jones N, Cooper J, Waters R, Williams D (2000). Resorption profile and biological response of calcium phosphate filled PLLA and PHB7V. ASTM Spec Tech Publ, 1396: 69–82
    Kai D, Loh X J (2014). Polyhydroxyalkanoates: Chemical modifications toward biomedical applications. ACS Sustain Chem& Eng, 2(2): 106–119CrossRef
    Kim H W, Chung C W, Rhee Y H (2005). UV-induced graft copolymerization of monoacrylate-poly(ethylene glycol) onto poly (3-hydroxyoctanoate) to reduce protein adsorption and platelet adhesion. Int J Biol Macromol, 35(1-2): 47–53CrossRef PubMed
    Köse G T, Korkusuz F, Korkusuz P, Purali N, Özkul A, Hasirci V (2003). Bone generation on PHBV matrices: an in vitro study. Biomaterials, 24(27): 4999–5007CrossRef PubMed
    Kostopoulos L, Karring T (1994). Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer. Clin Oral Implants Res, 5(2): 66–74CrossRef PubMed
    Kunze C, Edgar Bernd H, Androsch R, Nischan C, Freier T, Kramer S, Kramp B, Schmitz K P (2006). In vitro and in vivo studies on blends of isotactic and atactic poly (3-hydroxybutyrate) for development of a dura substitute material. Biomaterials, 27(2): 192–201CrossRef PubMed
    Kuroda K, Caputo G A (2013). Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 5(1): 49–66CrossRef PubMed
    Laycock B, Halley P, Pratt S, Werker A, Lant P (2013). The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci, 38(3-4): 536–583CrossRef
    Levine A C, Sparano A, Twigg FF, Numata K, Nomura C T (2015). Influence of cross-linking on the physical properties and cytotoxicity of polyhydroxyalkanoate (PHA) scaffolds for tissue engineering. ACS Biomater Sci Eng, 1(7): 567–576CrossRef
    Li J, Yun H, Gong Y, Zhao N, Zhang X (2005). Effects of surface modification of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) on physicochemical properties and on interactions with MC3T3-E1 cells. J Biomed Mater Res A, 75(4): 985–998CrossRef PubMed
    Li X, Chang H, Luo H, Wang Z, Zheng G, Lu X, He X, Chen F, Wang T, Liang J, Xu M (2015). Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds coated with PhaP-RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro. J Biomed Mater Res A, 103(3): 1169–1175CrossRef PubMed
    Li X T, Sun J, Chen S, Chen G Q (2008). In vitro investigation of maleated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for its biocompatibility to mouse fibroblast L929 and human microvascular endothelial cells. J Biomed Mater Res A, 87(3): 832–842CrossRef PubMed
    Lizarraga-Valderrama L R, Nigmatullin R, Taylor C, Haycock J W, Claeyssens F, Knowles J C, Roy I (2015). Nerve tissue engineering using blends of poly (3-hydroxyalkanoates) for peripheral nerve regeneration. Eng Life Sci, 15(6): 612–621CrossRef
    Lomas A J, Webb W R, Han J, Chen G Q, Sun X, Zhang Z, El Haj A J, Forsyth N R (2013). Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/ collagen hybrid scaffolds for tissue engineering applications. Tissue Eng Part C Methods, 19(8): 577–585CrossRef PubMed PubMedCentral
    Lu H X, Yang Z Q, Jiao Q, Wang Y Y, Wang L, Yang P B, Chen X L, Zhang P B, Wang P, Chen M X, Lu X Y, Liu Y (2014). Low concentration of serum helps to maintain the characteristics of NSCs/NPCs on alkali-treated PHBHHx film in vitro. Neurol Res, 36(3): 207–214CrossRef PubMed
    Lu X, Wang L, Yang Z, Lu H (2013). Strategies of polyhydroxyalkanoates modification for the medical application in neural regeneration/ nerve tissue engineering. Adv Biosci Biotechnol, 4(06): 731–740CrossRef
    Luklinska Z B, Bonfield W (1997). Morphology and ultrastructure of the interface between hydroxyapatite-polyhydroxybutyrate composite implant and bone. J Mater Sci Mater Med, 8(6): 379–383CrossRef PubMed
    Mauclaire L, Brombacher E, Bünger J D, Zinn M (2010). Factors controlling bacterial attachment and biofilm formation on mediumchain- length polyhydroxyalkanoates (mcl-PHAs). Colloids Surf B Biointerfaces, 76(1): 104–111CrossRef PubMed
    McBeath R, Pirone D M, Nelson C M, Bhadriraju K, Chen C S (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, 6(4): 483–495CrossRef PubMed
    Miller N D, Williams D F (1987). On the biodegradation of poly-betahydroxybutyrate (PHB) homopolymer and poly-beta-hydroxybutyrate- hydroxyvalerate copolymers. Biomaterials, 8(2): 129–137CrossRef PubMed
    Moy R L, Waldman B, Hein D W (1992). A review of sutures and suturing techniques. J Dermatol Surg Oncol, 18(9): 785–795CrossRef PubMed
    Mukai K, Doi Y, Sema Y, Tomita K (1993). Substrate specificities in hydrolysis of polyhydroxyalkanoates by microbial esterases. Biotechnol Lett, 15(6): 601–604CrossRef
    Naveen S V, Tan I K P, Goh Y S, Raghavendran H R B, Murali M R, Kamarul T (2015). Unmodified medium chain length polyhydroxyalkanoate (uMCL-PHA) as a thin film for tissue engineering application–characterization and in vitro biocompatibility. Mater Lett, 141: 55–58CrossRef
    Nelson T, Kaufman E, Kline J, Sokoloff L (1981). The extraneural distribution of g-hydroxybutyrate. J Neurochem, 37(5): 1345–1348CrossRef PubMed
    Novikov L N, Novikova L N, Mosahebi A, Wiberg M, Terenghi G, Kellerth J O (2002). A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials, 23(16): 3369–3376CrossRef PubMed
    Novikova L N, Pettersson J, Brohlin M, Wiberg M, Novikov L N (2008). Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterials, 29(9): 1198–1206CrossRef PubMed
    O’Connor S, Szwej E, Nikodinovic-Runic J, O’Connor A, Byrne A T, Devocelle M, O’Donovan N, Gallagher W M, Babu R, Kenny S T, Zinn M, Zulian Q R, O’Connor K E (2013). The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. Biomaterials, 34(11): 2710–2718CrossRef PubMed
    Pawan G L, Semple S J (1983). Effect of 3-hydroxybutyrate in obese subjects on very-low-energy diets and during therapeutic starvation. Lancet, 1(8314-5): 15–17CrossRef PubMed
    Pelham R J, Wang Y (1997). Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA, 94(25): 13661–13665CrossRef PubMed PubMedCentral
    Peng SW, Guo X Y, Shang G G, Li J, Xu X Y, You ML, Li P, Chen G Q (2011). An assessment of the risks of carcinogenicity associated with polyhydroxyalkanoates through an analysis of DNA aneuploid and telomerase activity. Biomaterials, 32(10): 2546–2555CrossRef PubMed
    Philip S, Keshavarz T, Roy I (2007). Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol, 82(3): 233–247CrossRef
    Qu X H, Wu Q, Liang J, Qu X, Wang S G, Chen G Q (2005). Enhanced vascular-related cellular affinity on surface modified copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials, 26(34): 6991–7001CrossRef PubMed
    Qu X H, Wu Q, Zhang K Y, Chen G Q (2006). In vivo studies of poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomaterials, 27(19): 3540–3548PubMed
    Ricotti L, Polini A, Genchi G G, Ciofani G, Iandolo D, Vazão H, Mattoli V, Ferreira L, Menciassi A, Pisignano D (2012). Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds. Biomed Mater, 7(3): 035010CrossRef PubMed
    Saito T, Tomita K, Juni K, Ooba K (1991). In vivo and in vitro degradation of poly(3-hydroxybutyrate) in rat. Biomaterials, 12(3): 309–312CrossRef PubMed
    Shangguan Y Y, Wang Y W, Wu Q, Chen G Q (2006). The mechanical properties and in vitro biodegradation and biocompatibility of UVtreated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Biomaterials, 27(11): 2349–2357CrossRef PubMed
    Shen F, Zhang E, Wei Z (2009). Surface bio-modification of poly (hydroxybutyrate-co-hydroxyhexanoate) and its aging effect. Colloids Surf B Biointerfaces, 73(2): 302–307CrossRef PubMed
    Shishatskaya E I, Volova T G, Gordeev S A, Puzyr A P (2005). Degradation of P(3HB) and P(3HB-co-3HV) in biological media. J Biomater Sci Polym Ed, 16(5): 643–657CrossRef PubMed
    Shrivastav A, Kim H Y, Kim Y R (2013). Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. BioMed Res Int, 2013: 581684CrossRef PubMed PubMedCentral
    Sodian R, Hoerstrup S P, Sperling J S, Daebritz S, Martin D P, Moran A M, Kim B S, Schoen F J, Vacanti J P, Mayer J E (2000). Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation, 102(19 Suppl 3): III22–III29CrossRef PubMed
    Stock U A, Degenkolbe I, Attmann T, Schenke-Layland K, Freitag S, Lutter G (2006). Prevention of device-related tissue damage during percutaneous deployment of tissue-engineered heart valves. J Thorac Cardiovasc Surg, 131(6): 1323–1330CrossRef PubMed
    Sun J, Dai Z, Zhao Y, Chen G-Q (2007). In vitro effect of oligohydroxyalkanoates on the growth of mouse fibroblast cell line L929. Biomaterials, 28: 3896–3903CrossRef PubMed
    Taylor M S, Daniels A U, Andriano K P, Heller J (1994). Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J Appl Biomater, 5(2): 151–157CrossRef PubMed
    Tezcaner A, Bugra K, Hasirci V (2003). Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films. Biomaterials, 24(25): 4573–4583CrossRef PubMed
    Valappil S P, Misra S K, Boccaccini A R, Roy I (2006). Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. Expert Rev Med Devices, 3(6): 853–868CrossRef PubMed
    Volova T, Goncharov D, Sukovatyi A, Shabanov A, Nikolaeva E, Shishatskaya E (2013). Electrospinning of polyhydroxyalkanoate fibrous scaffolds: effects on electrospinning parameters on structure and properties. J Biomater Sci Polym Ed, 25(4): 370–393CrossRef PubMed
    Wang Y, Jiang X L, Peng S W, Guo X Y, Shang G G, Chen J C, Wu Q, Chen G Q (2013). Induced apoptosis of osteoblasts proliferating on polyhydroxyalkanoates. Biomaterials, 34(15): 3737–3746CrossRef PubMed
    Wang Y, Jiang X L, Yang S C, Lin X, He Y, Yan C, Wu L, Chen G Q, Wang Z Y, Wu Q (2011). MicroRNAs in the regulation of interfacial behaviors of MSCs cultured on microgrooved surface pattern. Biomaterials, 32(35): 9207–9217CrossRef PubMed
    Wang Y W, Wu Q, Chen G Q (2004). Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydro-xybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomaterials, 25(4): 669–675CrossRef PubMed
    Wang Y W, Wu Q, Chen G Q (2005). Gelatin blending improves the performance of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films for biomedical application. Biomacromolecules, 6(2): 566–571CrossRef PubMed
    Wei X, Hu Y J, Xie WP, Lin R L, Chen G Q (2009). Influence of poly(3- hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) on growth and osteogenic differentiation of human bone marrowderived mesenchymal stem cells. J Biomed Mater Res A, 90(3): 894–905CrossRef PubMed
    Wu Q, Wang Y, Chen G Q (2009). Medical application of microbial biopolyesters polyhydroxyalkanoates Artificial Cells. Blood Substitutes and Biotechnology, 37(1): 1–12CrossRef
    Xu X Y, Li X T, Peng SW, Xiao J F, Liu C, Fang G, Chen K C, Chen G Q (2010). The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Biomaterials, 31(14): 3967–3975CrossRef PubMed
    Yan C, Wang Y, Shen X Y, Yang G, Jian J, Wang H S, Chen G Q, Wu Q (2011). MicroRNA regulation associated chondrogenesis of mouse MSCs grown on polyhydroxyalkanoates. Biomaterials, 32(27): 6435–6444CrossRef PubMed
    Yang X, Zhao K, Chen G Q (2002). Effect of surface treatment on the biocompatibility of microbial polyhydroxyalkanoates. Biomaterials, 23(5): 1391–1397CrossRef PubMed
    Yu B Y, Chen C R, Sun Y M, Young T H (2009). The response of rat cerebellar granule neurons (rCGNs) to various polyhydroxyalkanoate (PHA) films. Desalination, 245(1-3): 639–646CrossRef
    Zhao K, Deng Y, Chun Chen J, Chen G Q (2003). Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials, 24(6): 1041–1045CrossRef PubMed
    Zhao K, Yang X, Chen G Q, Chen J C (2002). Effect of lipase treatment on the biocompatibility of microbial polyhydroxyalkanoates. J Mater Sci Mater Med, 13(9): 849–854CrossRef PubMed
    Zhao Q, Wang S, Kong M, Geng W, Li R K, Song C, Kong D (2012). Phase morphology, physical properties, and biodegradation behavior of novel PLA/PHBHHx blends. J Biomed Mater Res B Appl Biomater, 100(1): 23–31CrossRef PubMed
    Zink D, Fischer A H, Nickerson J A (2004). Nuclear structure in cancer cells. Nat Rev Cancer, 4(9): 677–687CrossRef PubMed
  • 作者单位:Iftikhar Ali (1)
    Nazia Jamil (1)

    1. Microbiology and Molecular Genetics, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan
  • 刊物主题:Proteomics; Neurobiology; Genetics and Population Dynamics; Developmental Biology; Biochemistry, general; Cell Biology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1674-7992
文摘
Polyhydroxyalkanoates (PHAs) are a class of biopolyesters that are synthesized intracellularly by microorganisms, mainly by different genera of eubacteria. These biopolymers have diverse physical and chemical properties that also classify them as biodegradable in nature and make them compatible to living systems. In the last two decades or so, PHAs have emerged as potential useful materials in the medical field for different applications owing to their unique properties. The lower acidity and bioactivity of PHAs confer them with minimal risk compared to other biopolymers such as poly-lactic acid (PLA) and poly-glycolic acid (PGA). Therefore, the versatility of PHAs in terms of their non-toxic degradation products, biocompatibility, desired surface modifications, wide range of physical and chemical properties, cellular growth support, and attachment without carcinogenic effects have enabled their use as in vivo implants such as sutures, adhesion barriers, and valves to guide tissue repair and in regeneration devices such as cardiovascular patches, articular cartilage repair scaffolds, bone graft substitutes, and nerve guides. Here, we briefly describe some of the most recent innovative research involving the use of PHAs in medical applications. Microbial production of PHAs also provides the opportunity to develop PHAs with more unique monomer compositions economically through metabolic engineering approaches. At present, it is generally established that the PHA monomer composition and surface modifications influence cell responses.PHA synthesis by bacteria does not require the use of a catalyst (used in the synthesis of other polymers), which further promotes the biocompatibility of PHA-derived polymers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700