Mediated bioelectrochemical system for biosensing the cell viability of Staphylococcus aureus
详细信息    查看全文
  • 作者:Rabeay Y. A. Hassan ; Ulla Wollenberger
  • 关键词:Microbial electrochemistry ; Pathogenic detection ; Probing living Staphylococcus aureus ; CNTs ; based screen printed electrodes
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:408
  • 期:2
  • 页码:579-587
  • 全文大小:1,272 KB
  • 参考文献:1.Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339(8):520–532CrossRef
    2.Loffler B et al (2014) Staphylococcus aureus persistence in non-professional phagocytes. Int J Med Microbiol 304(2):170–176CrossRef
    3.Girones R et al (2010) Molecular detection of pathogens in water—the pros and cons of molecular techniques. Water Res 44(15):4325–4339CrossRef
    4.Arikan S (2007) Current status of antifungal susceptibility testing methods. Med Mycol: Off Publ Int Soc Human Animal Mycol 45(7):569–587CrossRef
    5.Spiegelman D, Whissell G, Greer CW (2005) A survey of the methods for the characterization of microbial consortia and communities. Can J Microbiol 51(5):355–386CrossRef
    6.Riesselman MH, Hazen KC, Cutler JE (2000) Determination of antifungal MICs by a rapid susceptibility assay. J Clin Microbiol 38(1):333–340
    7.Keer JT, Birch L (2003) Molecular methods for the assessment of bacterial viability. J Microbiol Methods 53(2):175–183CrossRef
    8.von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21(3):213–229CrossRef
    9.Byrne B et al (2009) Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors (Basel) 9(6):4407–4445CrossRef
    10.Lim DV et al (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 18(4):583–607CrossRef
    11.Tsukatani T et al (2008) Colorimetric cell proliferation assay for microorganisms in microtiter plate using water-soluble tetrazolium salts. J Microbiol Methods 75(1):109–116CrossRef
    12.Tsukatani T et al (2009) Colorimetric microbial viability assay based on reduction of water-soluble tetrazolium salts for antimicrobial susceptibility testing and screening of antimicrobial substances. Anal Biochem 393(1):117–125CrossRef
    13.Byth HA et al (2001) Assessment of a simple, non-toxic Alamar blue cell survival assay to monitor tomato cell viability. Phytochem Anal 12(5):340–346CrossRef
    14.Watanabe K et al (2009) Electron shuttles in biotechnology. Curr Opin Biotechnol 20(6):633–641CrossRef
    15.Wesolowski J et al (2008) Sensing of oxygen in microtiter plates: a novel tool for screening drugs against pathogenic yeasts. Anal Bioanal Chem 391(5):1731–1737CrossRef
    16.Wallace DC, Fan W, Procaccio V (2010) Mitochondrial energetics and therapeutics. Annu Rev Pathol 5:297–348CrossRef
    17.Grigorieff N (1999) Structure of the respiratory NADH:ubiquinone oxidoreductase (complex I). Curr Opin Struct Biol 9(4):476–483CrossRef
    18.Hassan RYA, Bilitewski U (2011) A viability assay for Candida albicans based on the electron transfer mediator 2,6-dichlorophenolindophenol. Anal Biochem 419(1):26–32CrossRef
    19.Hassan RYA, Bilitewski U (2013) Direct electrochemical determination of Candida albicans activity. Biosens Bioelectron 49:192–198CrossRef
    20.Rawson, FJ, AJ. Downard, KH Baronian (2014) Electrochemical detection of intracellular and cell membrane redox systems in Saccharomyces cerevisiae. Sci Rep 4: 5216
    21.Gottschamel J et al (2009) Development of a disposable microfluidic biochip for multiparameter cell population measurements. Anal Chem 81(20):8503–8512CrossRef
    22.Heiskanen A, YJ, Spégel C, Taboryski R, Koudelka-Hep M, Emnéus J, Ruzgas T (2004) Amperometric monitoring of redox activity in living yeast cells: comparison of menadione and menadione sodium bisulfite as electron transfer mediators. Electrochem Commun 6: 5
    23.Roller SD, BH, Delaney GM, Mason JR, Stirling JL (1984) Thurston CF Electron-transfer coupling in microbial fuel cells: 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. J Chem Tech Biotechnol 4B: 10
    24.Matsunaga T, Karube I, Suzuki S (1979) Electrode system for the determination of microbial populations. Appl Environ Microbiol 37(1):117–121
    25.Han S, LX, Guo G, Sun Y, Yuan Z (2000) Voltammetric measurement of microorganism populations. Analytica Chimica Acta 405(1–2): 115–121
    26.Heiskanen A et al (2013) Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment. Anal Bioanal Chem 405(11):3847–3858CrossRef
    27.Hassan RYA et al (2014) Nanomaterials-based microbial sensor for direct electrochemical detection of Streptomyces spp. Sensors Actuators B Chem 203:848–853CrossRef
    28.Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375–381CrossRef
    29.Janssen AJ et al (2007) Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts. Clin Chem 53(4):729–734CrossRef
    30.Spegel CF et al (2007) Amperometric response from the glycolytic versus the pentose phosphate pathway in Saccharomyces cerevisiae cells. Anal Chem 79(23):8919–8926CrossRef
    31.Nakamura H et al (2007) A simple and highly repeatable colorimetric toxicity assay method using 2,6-dichlorophenolindophenol as the redox color indicator and whole eukaryote cells. Anal Bioanal Chem 389(3):835–840CrossRef
    32.Nakamura H et al (2007) A simple and highly repeatable colorimetric toxicity assay method using 2,6-dichlorophenolindophenol as the redox color indicator and whole eukaryote cells. Anal Bioanal Chem 389(3):835–840CrossRef
    33.Bonanni A, Esplandiu MJ, del Valle M (2009) Impedimetric genosensors employing COOH-modified carbon nanotube screen-printed electrodes. Biosens Bioelectron 24(9):2885–2891CrossRef
    34.Zhao HZ et al (2012) Mechanisms for the direct electron transfer of cytochrome c induced by multi-walled carbon nanotubes. Sensors (Basel) 12(8):10450–10462CrossRef
    35.Esfandiari Baghbamidi S et al (2012) Modified carbon nanotube paste electrode for voltammetric determination of carbidopa, folic acid, and tryptophan. J Anal Methods Chem 2012:305872CrossRef
    36.Tian B, Lieber CM (2013) Synthetic nanoelectronic probes for biological cells and tissues. Annu Rev Anal Chem (Palo Alto, Calif) 6(1):31–51CrossRef
    37.Yuan Y et al (2011) Carbon nanoparticles-assisted mediator-less microbial fuel cells using Proteus vulgaris. Biosens Bioelectron 27(1):106–112CrossRef
    38.Hassan RY, Bilitewski U (2011) A viability assay for Candida albicans based on the electron transfer mediator 2,6-dichlorophenolindophenol. Anal Biochem 419(1):26–32CrossRef
    39.Hassan RY, Bilitewski U (2013) Direct electrochemical determination of Candida albicans activity. Biosens Bioelectron 49:192–198CrossRef
    40.Rycovska A et al (2000) The respiratory complex I in yeast: isolation of a gene NUO51 coding for the nucleotide-binding subunit of NADH:ubiquinone oxidoreductase from the obligately aerobic yeast Yarrowia lipolytica. Folia Microbiol (Praha) 45(5):429–433CrossRef
    41.Baronian KH et al (2002) Detection of two distinct substrate-dependent catabolic responses in yeast cells using a mediated electrochemical method. Appl Microbiol Biotechnol 60(1–2):108–113
    42.Zhao J et al (2007) The different behaviors of three oxidative mediators in probing the redox activities of the yeast Saccharomyces cerevisiae. Anal Chim Acta 597(1):67–74CrossRef
    43.Schutz B et al (2011) Investigation of the electron transport chain to and the catalytic activity of the diheme cytochrome c peroxidase CcpA of Shewanella oneidensis. Appl Environ Microbiol 77(17):6172–6180CrossRef
  • 作者单位:Rabeay Y. A. Hassan (1) (2)
    Ulla Wollenberger (1)

    1. Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknechtstrasse 24-25, 14476, Potsdam-Golm, Germany
    2. Microanalysis Lab, Applied Organic Chemistry Department, National Research Centre (NRC), El Bohouth St., Dokki, 12622, Giza, Egypt
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
Staphylococcus aureus is one of the most dangerous human pathogens and is the cause of numerous illnesses ranging from moderate skin infections to life-threatening diseases. Despite advances made in identifying microorganisms, rapid detection methods for the viability of bacteria are still missing. Here, we report a rapid electrochemical assay for cell viability combining the use of double redox mediators and multiwall carbon nanotubes-screen printed electrodes (MWCNTs-SPE), ferricyanide (FCN) and 2,6-dichlorophenolindophenol (DCIP), which served as electron shuttle to enable the bacterial-electrode communications. The current originating from the metabolically active cells was recorded for probing the activity of the intracellular redox centers. Blocking of the respiratory chain pathways with electron transfer inhibitors demonstrated the involvement of the electron transport chain in the reaction. A good correlation between the number of the metabolically active cells and the current was obtained. The proposed assay has been exploited for monitoring cell proliferation of S. aureus during the growth. The sensitivity of the detection method reached 0.1 OD600. Therefore, the technique described is promising for estimating the cell number, measuring the cell viability, and probing intracellular redox center(s). Keywords Microbial electrochemistry Pathogenic detection Probing living Staphylococcus aureus CNTs-based screen printed electrodes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700