Optical sensing and biosensing based on non-spherical noble metal nanoparticles
详细信息    查看全文
  • 作者:Yunsheng Xia
  • 关键词:Sensing ; Biosensing ; Optical sensors ; Non ; spherical metal nanoparticles
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:408
  • 期:11
  • 页码:2813-2825
  • 全文大小:1,116 KB
  • 参考文献:1.Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4(6):435–446CrossRef
    2.Freeman R, Willner I (2012) Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 41(10):4067–4085CrossRef
    3.Wu P, Hou X, Xu JJ, Chen HY (2014) Electrochemically generated versus photoexcited luminescence from semiconductor nanomaterials: bridging the valley between two worlds. Chem Rev 114(21):11027–11059CrossRef
    4.Vannoy CH, Tavares AJ, Noor MO, Uddayasankar U, Krull UJ (2011) Biosensing with quantum dots: a microfluidic approach. Sensors 11(12):9732–9763CrossRef
    5.Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, Imaging and drug delivery. Nano Res 2(2):85–120CrossRef
    6.Wang J (2005) Carbon-nanotube-based electrochemical biosensors: a review. Electroanalysis 17(1):7–14CrossRef
    7.Chang J, Zhou G, Christensen ER, Heideman R, Chen J (2014) Graphene-based sensors for detection of heavy metals in water: a review. Anal Bioanal Chem 406(16):3957–3975CrossRef
    8.Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene-based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036CrossRef
    9.Yavari F, Koratkar N (2012) Graphene-based chemical sensors. J Phys Chem Lett 3(13):1746–1753CrossRef
    10.Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148CrossRef
    11.Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42(8):1097–1107CrossRef
    12.Li YC, Lin YS, Tsai PJ, Chen CT, Chen WY, Chen YC (2007) Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides. Anal Chem 79(19):7519–7525CrossRef
    13.Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779CrossRef
    14.Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37(9):2028–2045CrossRef
    15.Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRef
    16.Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 101(39):14036–14039CrossRef
    17.Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586CrossRef
    18.Guo L, Jackman JA, Yang HH, Chen P, Cho NJ, Kim DH (2015) Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today 10(2):213–239CrossRef
    19.Zhou W, Gao X, Liu D, Chen X (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115(19):10575–10636CrossRef
    20.Yang X, Yang M, Pang B, Vara M, Xia Y (2015) Gold nanomaterials at work in biomedicine. Chem Rev 115(19):10410–10488CrossRef
    21.Xu L, Kuang H, Wang L, Xu C (2011) Gold nanorod ensembles as artificial molecules for applications in sensors. J Mater Chem 21(42):16759–16782CrossRef
    22.Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609CrossRef
    23.Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081CrossRef
    24.Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475CrossRef
    25.Yasun E, Kang H, Erdal H, Cansiz S, Ocsoy I, Huang YF, Tan W (2013) Cancer cell sensing and therapy using affinity tag-conjugated gold nanorods. Interface Focus 3:20130006
    26.Zhang J, Tang Y, Lee K, Ouyang M (2010) Tailoring light–matter–spin interactions in colloidal hetero-nanostructures. Nature 406(7302):91–95CrossRef
    27.Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910CrossRef
    28.Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22(16):1805–1825CrossRef
    29.Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110(9):3990–3994CrossRef
    30.Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco P, Alkilany A, Hankins PL, Kinard B (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 5:544–557CrossRef
    31.Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B: Biointerfaces 58(1):3–7CrossRef
    32.Xia Y, Ye J, Tan K, Wang J, Yang G (2013) Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism−glucose oxidase system. Anal Chem 85(13):6241–6247CrossRef
    33.Millstone JE, Wei W, Jones MR, Yoo H, Mirkin CA (2008) Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett 8(8):2526–2529CrossRef
    34.Tan K, Yang G, Chen H, Shen P, Huang Y, Xia Y (2014) Facet dependent binding and etching: ultra-sensitive colorimetric visualization of blood uric acid by unmodified silver nanoprisms. Biosens Bioelectron 59:227–232CrossRef
    35.Jana NR, Pal T (2007) Anisotropic metal nanoparticles for use as surface-enhanced Raman substrates. Adv Mater 19(13):1761–1765CrossRef
    36.Aslan K, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date. Anal Bioanal Chem 382(4):926–933CrossRef
    37.Aslan K, Wu M, Lakowicz JR, Geddes CD (2007) Fluorescent core−shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129(6):1524–1525CrossRef
    38.Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715CrossRef
    39.Murray CB, Kagan CR (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Res 30(1):545–610
    40.Stoeva S, Klabunde KJ, Sorensen CM, Dragieva I (2002) Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J Am Chem Soc 124(10):2305–2311CrossRef
    41.Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791CrossRef
    42.Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310–325CrossRef
    43.Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103CrossRef
    44.Chen HY, Lin MH, Wang CY, Chang YM, Gwo S (2015) Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J Am Chem Soc. doi:10.​1021/​jacs.​5b09111
    45.Bantz KC, Meyer AF, Wittenberg NJ, Im H, Kurtulus Ö, Lee SH, Lindquist NC, Oh SH, Haynes CL (2011) Recent progress in SERS biosensing. Phys Chem Chem Phys 13(24):11551–11567CrossRef
    46.Lane LA, Qian X, Nie S (2015) SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem Rev 115(19):10489–10529CrossRef
    47.Wu X, Ming T, Wang X, Wang P, Wang J, Chen J (2010) High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy. ACS Nano 4(1):113–120
    48.Zheng J, Zhang C, Dickson RM (2004) Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 93(7):077402CrossRef
    49.Faraday M (1857) The bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181CrossRef
    50.Mie G (1908) Beiträgezur optiktrüber medien, speziellkolloidaler metallösungen. Ann Phys 330(3):377–445CrossRef
    51.Gans R (1915) Form of ultramicroscopic particles of silver. Ann Phys 47:270–284CrossRef
    52.Sudeep PK, Shibu Joseph ST, Thomas KG (2005) Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc 127(18):6516–6517CrossRef
    53.Zhang S, Kou X, Yang Z, Shi Q, Stucky GD, Sun L, Wang J, Yan C (2007) Nanonecklaces assembled from gold rods, spheres, and bipyramids. Chem Commun (18):1816–1818
    54.Wang L, Zhu Y, Xu L, Chen W, Kuang H, Liu L, Agarwal A, Xu C, Kotov NA (2010) Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angew Chem Int Ed 49(32):5472–5475CrossRef
    55.Wang Y, Li YF, Wang J, Sang Y, Huang CZ (2010) End-to-end assembly of gold nanorods by means of oligonucleotide–mercury(II) molecular recognition. Chem Commun 46(8):1332–1334CrossRef
    56.Huang H, Qu C, Liu X, Huang S, Xu Z, Zhu Y, Chu PK (2011) Amplification of localized surface plasmon resonance signals by a gold nanorod assembly and ultra-sensitive detection of mercury. Chem Commun 47(24):6897–6899CrossRef
    57.Wang J, Zhang P, Li CM, Li YF, Huang CZ (2014) A highly selective and colorimetric assay of lysine by molecular-driven gold nanorods assembly. Biosens Bioelectron 34(1):197–201CrossRef
    58.Wang C, Chen Y, Wang T, Ma Z, Su Z (2007) Biorecognition-driven self-assembly of gold nanorods: a rapid and sensitive approach toward antibody sensing. Chem Mater 19(24):5809–5811CrossRef
    59.Zhen SJ, Huang CZ, Wang J, Li YF (2009) End-to-end assembly of gold nanorods on the basis of aptamer-protein recognition. J Phys Chem C 113(52):21543–21547CrossRef
    60.Lu L, Xia Y (2015) Enzymatic reaction-modulated gold nanorod end-to-end self-assembly for ultrahigh sensitively colorimetric sensing of cholinesterase and organophosphate pesticides in human blood. Anal Chem 87(16):8584–8591CrossRef
    61.Yu C, Irudayaraj J (2007) Multiplex biosensor using gold nanorods. Anal Chem 79(2):572–579CrossRef
    62.Marinakos SM, Chen S, Chilkoti A (2007) Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal Chem 79(14):5278–5283CrossRef
    63.Nusz GJ, Marinakos SM, Curry AC, Dahlin A, Höök F, Wax A, Chilkoti A (2008) Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal Chem 80(4):984–989CrossRef
    64.Chen S, Zhao Q, Liu F, Huang H, Wang L, Yi S, Zeng Y, Chen Y (2013) Ultrasensitive determination of copper in complex biological media based on modulation of plasmonic properties of gold nanorods. Anal Chem 85(19):9142–9147CrossRef
    65.Rex M, Hernandez FE, Campiglia AD (2006) Pushing the limits of mercury sensors with gold nanorods. Anal Chem 78(2):445–451CrossRef
    66.Liu X, Zhang S, Tan P, Zhou J, Huang Y, Nie Z, Yao S (2013) A plasmonic blood glucose monitor based on enzymatic etching of gold nanorods. Chem Commun 49(18):1856–1858CrossRef
    67.Zhang Z, Chen Z, Pan D, Chen L (2015) Fenton-like reaction-mediated etching of gold nanorods for visual detection of Co2+. Langmuir 31(1):643–650CrossRef
    68.Zhang Z, Chen Z, Chen L (2015) Ultrasensitive visual sensing of molybdate based on enzymatic-like etching of gold nanorods. Langmuir 31(33):9253–9259CrossRef
    69.Chen Z, Zhang Z, Qu C, Pan D, Chen L (2012) Highly sensitive label-free colorimetric sensing of nitrite based on etching of gold nanorods. Analyst 137(22):5197–5200CrossRef
    70.Agarwal A, Lilly GD, Govorov AO, Kotov NA (2008) Optical emission and energy transfer in nanoparticle−nanorod assemblies: potential energy pump system for negative refractive index materials. J Phys Chem C 112(47):18314–18320CrossRef
    71.Liang GX, Pan HC, Li Y, Jiang LP, Zhang JR, Zhu JJ (2009) Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods. Biosens Bioelectron 24(12):3693–3697CrossRef
    72.Xia Y, Song L, Zhu C (2011) Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)−(quantum dots) assembly. Anal Chem 83(4):1401–1407CrossRef
    73.Wang S, Riahi R, Li N, Zhang DD, Wong PK (2015) Single cell nanobiosensors for dynamic gene expression profiling in native tissue microenvironments. Adv Mater. doi:10.​1002/​adma.​201502814
    74.Yuan F, Chen H, Xu J, Zhang Y, Wu Y, Wang L (2014) Aptamer-based luminescence energy transfer from near-infrared-to-near-infrared up-converting nanoparticles to gold nanorods and its application for the detection of thrombin. Chem Eur J 20(10):2888–2894CrossRef
    75.Chen G, Jin Y, Wang L, Deng J, Zhang C (2011) Gold nanorods-based FRET assay for ultrasensitive detection of Hg2+. Chem Commun 47(46):12500–12502CrossRef
    76.Wang L, Jin Y, Deng J, Chen G (2011) Gold nanorods-based FRET assay for sensitive detection of Pb2+ using 8-17 DNAzyme. Analyst 136(24):5169–5174CrossRef
    77.Li X, Qian J, Jiang L, He S (2009) Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection. Appl Phys Lett 94(6):063111CrossRef
    78.Zeng Q, Zhang Y, Liu X, Tu L, Kong X, Zhang H (2012) Multiple homogeneous immunoassays based on a quantum dots-gold nanorods FRET nanoplatform. Chem Commun 48(12):1781–1783CrossRef
    79.Jin R, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294(5548):1901–1903CrossRef
    80.Zhang Q, Li N, Goebl J, Lu Z, Yin Y (2011) A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? J Am Chem Soc 133(46):18931–18939CrossRef
    81.Chen L, Ji F, Xu Y, He L, Mi Y, Bao F, Sun B, Zhang X, Zhang Q (2014) High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett 14(12):7201–7206CrossRef
    82.Wu T, Li YF, Huang CZ (2009) Selectively colorimetric detection of cysteine with triangular silver nanoprisms. Chin Chem Lett 20(5):611–614CrossRef
    83.Chen L, Fu X, Lu W, Chen L (2013) Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms. ACS Appl Mater Interface 5(2):284–290CrossRef
    84.Malile B, Chen JIL (2013) Morphology-based plasmonic nanoparticle sensors: controlling etching kinetics with target-responsive permeability gate. J Am Chem Soc 135(43):16042–16045CrossRef
    85.Yang X, Yu Y, Gao Z (2014) A highly sensitive plasmonic DNA assay based on triangular silver nanoprism etching. ACS Nano 8(5):4902–4907CrossRef
    86.Liang J, Yao C, Li X, Wu Z, Huang C, Fu Q, Lan C, Cao D, Tang Y (2015) Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosens Bioelectron 69:128–134CrossRef
    87.Wang X, Li S, Zhang P, Lv F, Liu L, Li L, Wang S (2015) An optical nanoruler based on a conjugated polymer silver nanoprism pair for label-free protein detection. Adv Mater. doi:10.​1002/​adma.​201502880
    88.Chan YH, Chen J, Liu Q, Wark SE, Son DH, Batteas JD (2010) Ultrasensitive copper(II) detection using plasmon-enhanced and photo
    ightened luminescence of CdSe quantum dots. Anal Chem 82(9):3671–3678CrossRef
    89.Rodríguez-Lorenzo L, Rica R, Álvarez-Puebla RA, Liz-Marzán LM, Stevens MM (2012) Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater 11(7):604–607CrossRef
    90.Chen H, Xia Y (2014) Compact hybrid (gold nanodendrite-quantum dots) assembly: plasmon enhanced fluorescence-based platform for small molecule sensing in solution. Anal Chem 86(22):11062–11069CrossRef
    91.Halder A, Ravishankar N (2007) Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv Mater 19(14):1854–1858CrossRef
    92.Chen J, McLellan JM, Siekkinen A, Xiong Y, Li ZY, Xia Y (2006) Facile synthesis of gold−silver nanocages with controllable pores on the surface. J Am Chem Soc 128(46):14776–14777CrossRef
    93.Feng Y, He J, Wang H, Tay YY, Sun H, Zhu L, Chen H (2012) An unconventional role of ligand in continuously tuning of metal–metal interfacial strain. J Am Chem Soc 134(4):2004–2007CrossRef
    94.Shi P, Liu Z, Dong K, Ju E, Ren J, Du Y, Li Z, Qu X (2014) A smart “sense-act-treat” system: combining a ratiometric pH sensor with a near infrared therapeutic gold nanocage. Adv Mater 26(38):6635–6641CrossRef
    95.Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337(2):171–194CrossRef
    96.Li Z, Zhu Z, Liu W, Zhou Y, Han B, Gao Y, Tang Z (2012) Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J Am Chem Soc 134(7):3322–3325CrossRef
    97.Liu D, Chen W, Wei J, Li X, Wang Z, Jiang X (2012) A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal Chem 84(9):4185–4191CrossRef
  • 作者单位:Yunsheng Xia (1)

    1. Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
Non-spherical noble metal nanoparticles (NPs) have widely tunable localized surface plasmon resonance, very high extinction coefficient, and strongly facet-dependent adsorption/binding properties. A few non-spherical noble metal NPs have been employed as reporters and/or modulators for various optical sensing. This review summarizes recent progress in the study of design, performance, and application of colorimetric and fluorescent sensing/biosensing systems based on three kinds of non-spherical noble metal NPs with different dimension, namely, one- (or quasi-one) dimensional nanorods, two-dimensional nanoplates, and three-dimensional nanodendritics; furthermore, the future developments in this research area are also discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700