Computational prediction of disease microRNAs in domestic animals
详细信息    查看全文
  • 作者:Teresia Buza (7) (8)
    Mark Arick II (8)
    Hui Wang (8)
    Daniel G Peterson (8)

    7. Department of Basic Sciences
    ; College of Veterinary Medicine ; Mississippi State University ; P. O. Box 6100 ; Mississippi State ; 39762 ; USA
    8. Institute for Genomics
    ; Biocomputing & Biotechnology ; Mississippi State University ; P. O. Box 9627 ; Mississippi State ; 39762 ; USA
  • 关键词:Disease microRNAs ; Target ; Domestic animals ; Homology ; Orthology ; Phylogenetic analysis
  • 刊名:BMC Research Notes
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:7
  • 期:1
  • 全文大小:1,480 KB
  • 参考文献:1. Winter, J, Jung, S, Keller, S, Gregory, RI, Diederichs, S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11: pp. 228-234 CrossRef
    2. Minguzzi, S, Selcuklu, SD, Spillane, C, Parle-McDermott, A (2014) An NTD-Associated Polymorphism in the 3鈥?UTR of MTHFD1L can Affect Disease Risk by Altering miRNA Binding. Hum Mutat 35: pp. 96-104 CrossRef
    3. Wang, L, Liu, W, Jiang, W, Lin, J, Jiang, Y, Li, B, Pang, D (2012) A miRNA binding site single-nucleotide polymorphism in the 3鈥?UTR region of the IL23R gene is associated with breast cancer. PLoS One 7: pp. e49823 CrossRef
    4. Fang, L, Du, WW, Yang, X, Chen, K, Ghanekar, A, Levy, G, Yang, W, Yee, AJ, Lu, WY, Xuan, JW, Gao, Z, Xie, F, He, C, Deng, Z, Yang, BB (2013) Versican 3'-untranslated region (3'-UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulating miRNA activity. FASEB J 27: pp. 907-919 CrossRef
    5. Marin, RM, Voellmy, F, von Erlach, T, Vanicek, J (2012) Analysis of the accessibility of CLIP bound sites reveals that nucleation of the miRNA: mRNA pairing occurs preferentially at the 3鈥?end of the seed match. RNA 18: pp. 1760-1770 CrossRef
    6. Niwa, R, Slack, FJ (2007) The evolution of animal microRNA function. Curr Opin Genet Dev 17: pp. 145-150 CrossRef
    7. Christodoulou, F, Raible, F, Tomer, R, Simakov, O, Trachana, K, Klaus, S, Snyman, H, Hannon, GJ, Bork, P, Arendt, D (2010) Ancient animal microRNAs and the evolution of tissue identity. Nature 463: pp. 1084-1088 CrossRef
    8. Ma, ZL, Yang, HY, Tien, P (2003) Progress of miRNA and its functions in eukaryotes. Yi Chuan 30: pp. 693-696
    9. Pasquinelli, AE, Reinhart, BJ, Slack, F, Martindale, MQ, Kuroda, MI, Maller, B, Hayward, DC, Ball, EE, Degnan, B, Muller, P, Spring, J, Srinivasan, A, Fishman, M, Finnerty, J, Corbo, J, Levine, M, Leahy, P, Davidson, E, Ruvkun, G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408: pp. 86-89 CrossRef
    10. Reinhart, BJ, Slack, FJ, Basson, M, Pasquinelli, AE, Bettinger, JC, Rougvie, AE, Horvitz, HR, Ruvkun, G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: pp. 901-906 CrossRef
    11. Lee, RC, Feinbaum, RL, Ambros, V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: pp. 843-854 CrossRef
    12. Wightman, B, Ha, I, Ruvkun, G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: pp. 855-862 CrossRef
    13. Lu, TX, Sherrill, JD, Wen, T, Plassard, AJ, Besse, JA, Abonia, JP, Franciosi, JP, Putnam, PE, Eby, M, Martin, LJ, Aronow, BJ, Rothenberg, ME (2012) MicroRNA signature in patients with eosinophilic esophagitis, reversibility with glucocorticoids, and assessment as disease biomarkers. J Allergy Clin Immunol 129: pp. 1064-1075 e1069 CrossRef
    14. Heneghan, HM, Miller, N, Kelly, R, Newell, J, Kerin, MJ (2010) Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 15: pp. 673-682 CrossRef
    15. Shi, H, Xu, J, Zhang, G, Xu, L, Li, C, Wang, L, Zhao, Z, Jiang, W, Guo, Z, Li, X (2013) Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes. BMC Syst Biol 7: pp. 101 CrossRef
    16. Bhayani, MK, Calin, GA, Lai, SY (2012) Functional relevance of miRNA sequences in human disease. Mutat Res 731: pp. 14-19 CrossRef
    17. Zheng, Z, Zeng, Y, Huang, H, Xu, F (2013) MicroRNA-132 may play a role in coexistence of depression and cardiovascular disease: a hypothesis. Med Sci Monit 19: pp. 438-443 CrossRef
    18. Wu, C, Gong, Y, Sun, A, Zhang, Y, Zhang, C, Zhang, W, Zhao, G, Zou, Y, Ge, J (2013) The human MTHFR rs4846049 polymorphism increases coronary heart disease risk through modifying miRNA binding. Nutr Metab Cardiovasc Dis 23: pp. 693-698 CrossRef
    19. Steinfeld, I, Navon, R, Ach, R, Yakhini, Z (2013) miRNA target enrichment analysis reveals directly active miRNAs in health and disease. Nucleic Acids Res 41: pp. e45 CrossRef
    20. Shrivastava, S, Petrone, J, Steele, R, Lauer, GM, Di Bisceglie, AM, Ray, RB (2013) Up-regulation of circulating miR-20a is correlated with hepatitis C virus-mediated liver disease progression. Hepatology 58: pp. 863-871 CrossRef
    21. Shimizu, C, Kim, J, Stepanowsky, P, Trinh, C, Lau, HD, Akers, JC, Chen, C, Kanegaye, JT, Tremoulet, A, Ohno-Machado, L, Burns, JC (2013) Differential expression of miR-145 in children with Kawasaki disease. PLoS One 8: pp. e58159 CrossRef
    22. Shapshak, P (2013) Molecule of the month: miRNA and Human Prion brain disease. Bioinformation 9: pp. 659-660 CrossRef
    23. Selth, LA, Townley, SL, Gillis, JL, Tilley, WD, Butler, LM (2013) Identification of prostate cancer-associated micrornas in circulation using a mouse model of disease. Methods Mol Biol 1024: pp. 235-246 CrossRef
    24. Qi, J, Hou, S, Zhang, Q, Liao, D, Wei, L, Fang, J, Zhou, Y, Kijlstra, A, Yang, P (2013) A functional variant of pre-miRNA-196a2 confers risk for Behcet鈥檚 disease but not for Vogt-Koyanagi-Harada syndrome or AAU in ankylosing spondylitis. Hum Genet 132: pp. 1395-1404 CrossRef
    25. Qabaja, A, Alshalalfa, M, Bismar, TA, Alhajj, R (2013) Protein network-based Lasso regression model for the construction of disease-miRNA functional interactions. EURASIP J Bioinform Syst Biol 2013: pp. 3 CrossRef
    26. Patel, V, Williams, D, Hajarnis, S, Hunter, R, Pontoglio, M, Somlo, S, Igarashi, P (2013) miR-17~92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc Natl Acad Sci U S A 110: pp. 10765-10770 CrossRef
    27. Toiyama, Y, Hur, K, Tanaka, K, Inoue, Y, Kusunoki, M, Boland, CR, Goel, A (2014) Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg 259: pp. 735-743 CrossRef
    28. Hussein, F-K, Nizar, B, Mehdi, N, Philippe, L, Mohammad, F-K, Rabih, B, Eva, H, Ahmad, D, Nader, H, Rim, ED, Fadwa, B, Luc, V, Ars猫ne, B, Philippe, M, Redouane, R, Bassam, B (2013) Circulating miR-150 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia. J Transl Med 11: pp. 31-31 CrossRef
    29. Erener, S, Mojibian, M, Fox, JK, Denroche, HC, Kieffer, TJ (2013) Circulating miR-375 as a biomarker of 尾-cell death and diabetes in mice. Endocrinology 154: pp. 603-608 CrossRef
    30. Zeng, X, Xiang, J, Wu, M, Xiong, W, Tang, H, Deng, M, Li, X, Liao, Q, Su, B, Luo, Z, Zhou, Y, Zhou, M, Zeng, Z, Li, X, Shen, S, Shuai, C, Li, G, Fang, J, Peng, S (2012) Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma. PLoS One 7: pp. e46367 CrossRef
    31. Wang, N, Zhou, Y, Jiang, L, Li, D, Yang, J, Zhang, CY, Zen, K (2012) Urinary microRNA-10a and microRNA-30d serve as novel, sensitive and specific biomarkers for kidney injury. PLoS One 7: pp. e51140 CrossRef
    32. Sun, Y, Wang, M, Lin, G, Sun, S, Li, X, Qi, J, Li, J (2012) Serum microRNA-155 as a potential biomarker to track disease in breast cancer. PLoS One 7: pp. e47003 CrossRef
    33. Garofalo, M, Romano, G, Di Leva, G, Nuovo, G, Jeon, Y-J, Ngankeu, A, Sun, J, Lovat, F, Alder, H, Condorelli, G, Engelman, JA, Ono, M, Rho, JK, Cascione, L, Volinia, S, Nephew, KP, Croce, CM (2012) EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 18: pp. 74-82
    34. Tsujiura, M, Ichikawa, D, Komatsu, S, Shiozaki, A, Takeshita, H, Kosuga, T, Konishi, H, Morimura, R, Deguchi, K, Fujiwara, H, Okamoto, K, Otsuji, E (2010) Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer 102: pp. 1174-1179 CrossRef
    35. Zeng, Z, Wang, J, Zhao, L, Hu, P, Zhang, H, Tang, X, He, D, Tang, S, Zeng, Z (2013) Potential role of microRNA-21 in the diagnosis of gastric cancer: a meta-analysis. PLoS One 8: pp. e73278 CrossRef
    36. Zeng, R-C, Zhang, W, Yan, X-Q, Ye, Z-Q, Chen, E-D, Huang, D-P, Zhang, X-H, Huang, G-L (2013) Down-regulation of miRNA-30a in human plasma is a novel marker for breast cancer. Med Oncol 30: pp. 477 CrossRef
    37. Yong, FL, Law, CW, Wang, CW (2013) Potentiality of a triple microRNA classifier: miR-193a-3p, miR-23a and miR-338-5p for early detection of colorectal cancer. BMC Cancer 13: pp. 280-280 CrossRef
    38. Ye, J, Wu, X, Wu, D, Wu, P, Ni, C, Zhang, Z, Chen, Z, Qiu, F, Xu, J, Huang, J (2013) miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One 8: pp. e60687 CrossRef
    39. Wu, J, Yang, T, Li, X, Yang, Q, Liu, R, Huang, J, Li, Y, Yang, C, Jiang, Y (2013) Alteration of serum miR-206 and miR-133b is associated with lung carcinogenesis induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Toxicol Appl Pharmacol 267: pp. 238-246 CrossRef
    40. Yamada, N, Nakagawa, Y, Tsujimura, N, Kumazaki, M, Noguchi, S, Mori, T, Hirata, I, Maruo, K, Akao, Y (2013) Role of intracellular and extracellular MicroRNA-92a in colorectal cancer. Transl Oncol 6: pp. 482-492 CrossRef
    41. Watahiki, A, Macfarlane, RJ, Gleave, ME, Crea, F, Wang, Y, Helgason, CD, Chi, KN (2013) Plasma miRNAs as biomarkers to identify patients with castration-resistant metastatic prostate cancer. Int J Mol Sci 14: pp. 7757-7770 CrossRef
    42. Wang, Z, Han, J, Cui, Y, Fan, K, Zhou, X (2013) Circulating microRNA-21 as noninvasive predictive biomarker for response in cancer immunotherapy. Med Hypotheses 81: pp. 41-43 CrossRef
    43. Wang, JL, Hu, Y, Kong, X, Wang, ZH, Chen, HY, Xu, J, Fang, JY (2013) Candidate microRNA biomarkers in human gastric cancer: a systematic review and validation study. PLoS One 8: pp. e73683 CrossRef
    44. Gidl枚f, O, Smith, JG, Miyazu, K, Gilje, P, Spencer, A, Blomquist, S, Erlinge, D (2013) Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc Disord 13: pp. 12-12 CrossRef
    45. Zhu, S, Cao, L, Zhu, J, Kong, L, Jin, J, Qian, L, Zhu, C, Hu, X, Li, M, Guo, X, Han, S, Yu, Z (2013) Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta 424: pp. 66-72 CrossRef
    46. Zhou, X, Mao, A, Wang, X, Duan, X, Yao, Y, Zhang, C (2013) Urine and serum microRNA-1 as novel biomarkers for myocardial injury in open-heart surgeries with cardiopulmonary bypass. PLoS One 8: pp. e62245 CrossRef
    47. Wang, E, Nie, Y, Zhao, Q, Wang, W, Huang, J, Liao, Z, Zhang, H, Hu, S, Zheng, Z (2013) Circulating miRNAs reflect early myocardial injury and recovery after heart transplantation. J Cardiothorac Surg 8: pp. 165-165 CrossRef
    48. Matsumoto, S, Sakata, Y, Suna, S, Nakatani, D, Usami, M, Hara, M, Kitamura, T, Hamasaki, T, Nanto, S, Kawahara, Y, Komuro, I (2013) Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res 113: pp. 322-326 CrossRef
    49. Finn, NA, Eapen, D, Manocha, P, Al Kassem, H, Lassegue, B, Ghasemzadeh, N, Quyyumi, A, Searles, CD (2013) Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport. FEBS Lett 587: pp. 3456-3463 CrossRef
    50. Dickinson, BA, Semus, HM, Montgomery, RL, Stack, C, Latimer, PA, Lewton, SM, Lynch, JM, Hullinger, TG, Seto, AG, van Rooij, E (2013) Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension-induced heart failure. Eur J Heart Fail 15: pp. 650-659 CrossRef
    51. Wang, H, Lu, H-M, Yang, W-H, Luo, C, Lu, S-H, Zhou, Y, Lin, Y-Z (2012) The influence of statin therapy on circulating microRNA-92a expression in patients with coronary heart disease. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 24: pp. 215-218
    52. Agarwal, SM, Raghav, D, Singh, H, Raghava, GP (2011) CCDB: a curated database of genes involved in cervix cancer. Nucleic Acids Res 39: pp. D975-979 CrossRef
    53. Gong, J, Tong, Y, Zhang, HM, Wang, K, Hu, T, Shan, G, Sun, J, Guo, AY (2012) Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat 33: pp. 254-263 CrossRef
    54. Guo, D, Liu, J, Wang, W, Hao, F, Sun, X, Wu, X, Bu, P, Zhang, Y, Liu, Y, Liu, F, Zhang, Q, Jiang, F (2013) Alteration in abundance and compartmentalization of inflammation-related miRNAs in plasma after intracerebral hemorrhage. Stroke 44: pp. 1739-1742 CrossRef
    55. Wang, H, Peng, W, Shen, X, Huang, Y, Ouyang, X, Dai, Y (2012) Circulating levels of inflammation-associated miR-155 and endothelial-enriched miR-126 in patients with end-stage renal disease. Braz J Med Biol Res 45: pp. 1308-1314 CrossRef
    56. Bala, S, Petrasek, J, Mundkur, S, Catalano, D, Levin, I, Ward, J, Alao, H, Kodys, K, Szabo, G (2012) Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 56: pp. 1946-1957 CrossRef
    57. Bhattacharyya, S, Balakathiresan, NS, Dalgard, C, Gutti, U, Armistead, D, Jozwik, C, Srivastava, M, Pollard, HB, Biswas, R (2011) Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol Chem 286: pp. 11604-11615 CrossRef
    58. Blanco-Calvo, M, Calvo, L, Figueroa, A, Haz-Conde, M, Ant贸n-Aparicio, L, Valladares-Ayerbes, M (2012) Circulating microRNAs: molecular microsensors in gastrointestinal cancer. Sensors (Basel) 12: pp. 9349-9362 CrossRef
    59. Barnard, JA (2013) Recent advances in pediatric gastroenterology, hepatology and nutrition. F1000Prime Rep 5: pp. 25 CrossRef
    60. Duttagupta, R, DiRienzo, S, Jiang, R, Bowers, J, Gollub, J, Kao, J, Kearney, K, Rudolph, D, Dawany, NB, Showe, MK, Stamato, T, Getts, RC, Jones, KW (2012) Genome-wide maps of circulating miRNA biomarkers for ulcerative colitis. PLoS One 7: pp. e31241 CrossRef
    61. Li, Y, Qiu, C, Tu, J, Geng, B, Yang, J, Jiang, T, Cui, Q (2014) HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42: pp. D1070-1074 CrossRef
    62. Bhattacharya, A, Ziebarth, JD, Cui, Y (2014) PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res 42: pp. D86-91 CrossRef
    63. Dong, L, Luo, M, Wang, F, Zhang, J, Li, T, Yu, J (2013) TUMIR: an experimentally supported database of microRNA deregulation in various cancers. J Clin Bioinformatics 3: pp. 7 CrossRef
    64. Bruno, AE, Li, L, Kalabus, JL, Pan, Y, Yu, A, Hu, Z (2012) miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3鈥睻TRs of human genes. BMC Genomics 13: pp. 44 CrossRef
    65. Ruepp, A, Kowarsch, A, Theis, F (2012) PhenomiR: microRNAs in human diseases and biological processes. Methods Mol Biol 822: pp. 249-260 CrossRef
    66. Ziebarth, JD, Bhattacharya, A, Chen, A, Cui, Y (2012) PolymiRTS Database 2.0: linking polymorphisms in microRNA target sites with human diseases and complex traits. Nucleic Acids Res 40: pp. D216-221 CrossRef
    67. Xie, B, Ding, Q, Han, H, Wu, D (2013) miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics 29: pp. 638-644 CrossRef
    68. Kiran, C, Deepika, P (2012) Lung cancer: microRNA and target database. Zhongguo Fei Ai Za Zhi 15: pp. 429-434
    69. Mitra, S, Das, S, Das, S, Ghosal, S, Chakrabarti, J (2012) HNOCDB: a comprehensive database of genes and miRNAs relevant to head and neck and oral cancer. Oral Oncol 48: pp. 117-119 CrossRef
    70. Yang, Z, Ren, F, Liu, C, He, S, Sun, G, Gao, Q, Yao, L, Zhang, Y, Miao, R, Cao, Y, Zhao, Y, Zhong, Y, Zhao, H (2010) dbDEMC: a database of differentially expressed miRNAs in human cancers. BMC Genomics 11 Suppl 4: pp. S5 CrossRef
    71. Lu, M, Zhang, Q, Deng, M, Miao, J, Guo, Y, Gao, W, Cui, Q (2008) An analysis of human microRNA and disease associations. PLoS One 3: pp. e3420 CrossRef
    72. Jiang, Q, Wang, Y, Hao, Y, Juan, L, Teng, M, Zhang, X, Li, M, Wang, G, Liu, Y (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37: pp. D98-104 CrossRef
    73. Kozomara, A, Griffiths-Jones, S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39: pp. D152-157 CrossRef
    74. Sievers, F, Wilm, A, Dineen, D, Gibson, TJ, Karplus, K, Li, W, Lopez, R, McWilliam, H, Remmert, M, S枚ding, J, Thompson, JD, Higgins, DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7: pp. 539 CrossRef
    75. EMBL-EBI: ClustalW2 鈥?Phylogeny: commonly used phylogenetic tree generation methods provided by the ClustalW2 program. http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?tool=clustalw2_phylogeny
    76. Kasprzyk, A (2011) BioMart: driving a paradigm change in biological data management. Database (Oxford) 2011: pp. bar049 CrossRef
    77. Baxevanis, AD (2012) Searching Online Mendelian Inheritance in Man (OMIM) for information on genetic loci involved in human disease. Curr Protoc Hum Genet Chapter 9: pp. Unit 9 13 11鈥?0
    78. Lenffer, J, Nicholas, FW, Castle, K, Rao, A, Gregory, S, Poidinger, M, Mailman, MD, Ranganathan, S (2006) OMIA (Online Mendelian Inheritance in Animals): an enhanced platform and integration into the Entrez search interface at NCBI. Nucleic Acids Res 34: pp. D599-601 CrossRef
    79. Schriml, LM, Arze, C, Nadendla, S, Chang, YW, Mazaitis, M, Felix, V, Feng, G, Kibbe, WA (2012) Disease Ontology: a backbone for disease semantic integration. Nucleic Acids Res 40: pp. D940-946 CrossRef
    80. Smith, B, Ashburner, M, Rosse, C, Bard, J, Bug, W, Ceusters, W, Goldberg, LJ, Eilbeck, K, Ireland, A, Mungall, CJ, Leontis, N, Rocca-Serra, P, Ruttenberg, A, Sansone, SA, Scheuermann, RH, Shah, N, Whetzel, PL, Lewis, S (2007) The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25: pp. 1251-1255 CrossRef
    81. Gremse, M, Chang, A, Schomburg, I, Grote, A, Scheer, M, Ebeling, C, Schomburg, D (2011) The BRENDA Tissue Ontology (BTO): the first all-integrating ontology of all organisms for enzyme sources. Nucleic Acids Res 39: pp. D507-513 CrossRef
    82. McCarthy, FM, Gresham, CR, Buza, TJ, Chouvarine, P, Pillai, LR, Kumar, R, Ozkan, S, Wang, H, Manda, P, Arick, T, Bridges, SM, Burgess, SC (2011) AgBase: supporting functional modeling in agricultural organisms. Nucleic Acids Res 39: pp. D497-506 CrossRef
    83. McCarthy, FM, Wang, N, Magee, GB, Nanduri, B, Lawrence, ML, Camon, EB, Barrell, DG, Hill, DP, Dolan, ME, Williams, WP, Luthe, DS, Bridges, SM, Burgess, SC (2006) AgBase: a functional genomics resource for agriculture. BMC genomics 7: pp. 229 CrossRef
    84. Jordan, SD, Kruger, M, Willmes, DM, Redemann, N, Wunderlich, FT, Bronneke, HS, Merkwirth, C, Kashkar, H, Olkkonen, VM, Bottger, T, Braun, T, Seibler, J, Bruning, JC (2011) Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 13: pp. 434-446 CrossRef
    85. Harris, MA, Clark, J, Ireland, A, Lomax, J, Ashburner, M, Foulger, R, Eilbeck, K, Lewis, S, Marshall, B, Mungall, C, Richter, J, Rubin, GM, Blake, JA, Bult, C, Dolan, M, Drabkin, H, Eppig, JT, Hill, DP, Ni, L, Ringwald, M, Balakrishnan, R, Cherry, JM, Christie, KR, Costanzo, MC, Dwight, SS, Engel, S, Fisk, DG, Hirschman, JE, Hong, EL, Nash, RS (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32: pp. D258-261
    86. Ashburner, M, Ball, CA, Blake, JA, Botstein, D, Butler, H, Cherry, JM, Davis, AP, Dolinski, K, Dwight, SS, Eppig, JT, Harris, MA, Hill, DP, Issel-Tarver, L, Kasarskis, A, Lewis, S, Matese, JC, Richardson, JE, Ringwald, M, Rubin, GM, Sherlock, G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: pp. 25-29 CrossRef
    87. Zhao, A, Li, G, Peoc鈥檋, M, Genin, C, Gigante, M (2013) Serum miR-210 as a novel biomarker for molecular diagnosis of clear cell renal cell carcinoma. Exp Mol Pathol 94: pp. 115-120 CrossRef
    88. Yu, X, Luo, L, Wu, Y, Yu, X, Liu, Y, Yu, X, Zhao, X, Zhang, X, Cui, L, Ye, G, Le, Y, Guo, J (2013) Gastric juice miR-129 as a potential biomarker for screening gastric cancer. Med Oncol 30: pp. 365 CrossRef
    89. Yang IP, Tsai H-L, Huang C-W, Huang M-Y, Hou M-F, Juo S-HH, Wang J-Y: The functional significance of MicroRNA-29c in patients with colorectal cancer: a potential circulating biomarker for predicting early relapse. / PLoS One 2013.,8(6):
    90. Ting, HJ, Messing, J, Yasmin-Karim, S, Lee, YF (2013) Identification of microRNA-98 as a therapeutic target inhibiting prostate cancer growth and a biomarker induced by vitamin D. J Biol Chem 288: pp. 1-9 CrossRef
    91. Si, H, Sun, X, Chen, Y, Cao, Y, Chen, S, Wang, H, Hu, C (2013) Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J Cancer Res Clin Oncol 139: pp. 223-229 CrossRef
    92. Mori, F, Strano, S, Blandino, G (2013) MicroRNA-181a/b: novel biomarkers to stratify breast cancer patients for PARPi treatment. Cell Cycle 12: pp. 1823-1824 CrossRef
    93. Li, C, Li, JF, Cai, Q, Qiu, QQ, Yan, M, Liu, BY, Zhu, ZG (2013) MiRNA-199a-3p: A potential circulating diagnostic biomarker for early gastric cancer. J Surg Oncol 108: pp. 89-92 CrossRef
    94. Endo, K, Naito, Y, Ji, X, Nakanishi, M, Noguchi, T, Goto, Y, Nonogi, H, Ma, X, Weng, H, Hirokawa, G, Asada, T, Kakinoki, S, Yamaoka, T, Fukushima, Y, Iwai, N (2013) MicroRNA 210 as a biomarker for congestive heart failure. Biol Pharm Bull 36: pp. 48-54 CrossRef
    95. Bauters, C, Kumarswamy, R, Holzmann, A, Bretthauer, J, Anker, SD, Pinet, F, Thum, T (2013) Circulating miR-133a and miR-423-5p fail as biomarkers for left ventricular remodeling after myocardial infarction. Int J Cardiol 168: pp. 1837-1840 CrossRef
    96. Parker, HG, Ostrander, EA (2014) Cancer. Hiding in plain view--an ancient dog in the modern world. Science 343: pp. 376-378 CrossRef
    97. Rowell, JL, McCarthy, DO, Alvarez, CE (2011) Dog models of naturally occurring cancer. Trends Mol Med 17: pp. 380-388 CrossRef
    98. Khanna, C, Lindblad-Toh, K, Vail, D, London, C, Bergman, P, Barber, L, Breen, M, Kitchell, B, McNeil, E, Modiano, JF, Niemi, S, Comstock, KE, Ostrander, E, Westmoreland, S, Withrow, S (2006) The dog as a cancer model. Nat Biotechnol 24: pp. 1065-1066 CrossRef
    99. Davis, JL, Gardner, SY, Schwabenton, B, Breuhaus, BA (2002) Congestive heart failure in horses: 14 cases (1984鈥?001). J Am Vet Med Assoc 220: pp. 1512-1515 CrossRef
  • 刊物主题:Biomedicine general; Medicine/Public Health, general; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1756-0500
文摘
Background The most important means of identifying diseases before symptoms appear is through the discovery of disease-associated biomarkers. Recently, microRNAs (miRNAs) have become highly useful biomarkers of infectious, genetic and metabolic diseases in human but they have not been well studied in domestic animals. It is probable that many of the animal homologs of human disease-associated miRNAs may be involved in domestic animal diseases. Here we describe a computational biology study in which human disease miRNAs were utilized to predict orthologous miRNAs in cow, chicken, pig, horse, and dog. Results We identified 287 human disease-associated miRNAs which had at least one 100% identical animal homolog. The 287 miRNAs were associated with 359 human diseases referenced in 2,863 Pubmed articles. Multiple sequence analysis indicated that over 60% of known horse mature miRNAs found perfect matches in human disease-associated miRNAs, followed by dog (50%). As expected, chicken had the least number of perfect matches (5%). Phylogenetic analysis of miRNA precursors indicated that 85% of human disease pre-miRNAs were highly conserved in animals, showing less than 5% nucleotide substitution rates over evolutionary time. As an example we demonstrated conservation of human hsa-miR-143-3p which is associated with type 2 diabetes and targets AKT1 gene which is highly conserved in pig, horse and dog. Functional analysis of AKT1 gene using Gene Ontology (GO) showed that it is involved in glucose homeostasis, positive regulation of glucose import, positive regulation of glycogen biosynthetic process, glucose transport and response to food. Conclusions This data provides the animal and veterinary research community with a resource to assist in generating hypothesis-driven research for discovering animal disease-related miRNA from their datasets and expedite development of prophylactic and disease-treatment strategies and also influence research efforts to identify novel disease models in large animals. Integrated data is available for download at http://agbase.hpc.msstate.edu/cgi-bin/animal_mirna.cgi.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700