用户名: 密码: 验证码:
Structural and biochemical insights into the V/I505T mutation found in the EIAV gp45 vaccine strain
详细信息    查看全文
  • 作者:Jiansen Du (5)
    Xuefeng Wang (4)
    Jing Ma (5)
    Jianxin Wang (5)
    Yuyin Qin (4)
    Chunhui Zhu (4)
    Fang Liu (5)
    Yiming Shao (5)
    Jianhua Zhou (4)
    Wentao Qiao (5)
    Xinqi Liu (5)

    5. State Key Laboratory for Infectious Disease Prevention and Control
    ; and National Center for AIDS/STD Control and Prevention ; Chinese Center for Disease Control and Prevention ; Beijing ; 102206 ; China
    4. State Key Laboratory of Veterinary Biotechnology
    ; Harbin Veterinary Research Institute ; Chinese Academy of Agricultural Sciences ; Harbin ; 150001 ; China
  • 关键词:EIAV ; gp45 ; Crystal structure ; Stability ; Vaccine strain ; Heptad repeat ; Pre ; fusion conformation ; Replication
  • 刊名:Retrovirology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:11
  • 期:1
  • 全文大小:1,224 KB
  • 参考文献:1. Gorry, PR, Ancuta, P (2011) Coreceptors and HIV-1 pathogenesis. Curr HIV/AIDS Rep 8: pp. 45-53 CrossRef
    2. Campbell, EM, Hope, TJ (2008) Live cell imaging of the HIV-1 life cycle. Trends Microbiol 16: pp. 580-587 CrossRef
    3. Citterio, P, Rusconi, S (2007) Novel inhibitors of the early steps of the HIV-1 life cycle. Expert Opin Investig Drugs 16: pp. 11-23 CrossRef
    4. Cook, RF, Leroux, C, Issel, CJ (2013) Equine infectious anemia and equine infectious anemia virus in 2013A review. Vet Microbiol 167: pp. 181-204 CrossRef
    5. Nakamura, H, Miyazaki, N, Hosoya, N, Koga, M, Odawara, T, Kikuchi, T, Koibuchi, T, Kawana-Tachikawa, A, Fujii, T, Miura, T, Iwamoto, A (2011) Long-term successful control of super-multidrug-resistant human immunodeficiency virus type 1 infection by a novel combination therapy of raltegravir, etravirine, and boosted-darunavir. J Infect Chemother 17: pp. 105-110 CrossRef
    6. Rerks-Ngarm, S, Pitisuttithum, P, Nitayaphan, S, Kaewkungwal, J, Chiu, J, Paris, R, Premsri, N, Namwat, C, de Souza, M, Adams, E, Benenson, M, Gurunathan, S, Tartaglia, J, McNeil, JG, Feancis, DP, Stablein, D, Biex, DL, Chunsuttiwat, S, Khamboonruang, C, Thongcharoen, P, Robb, ML, Michael, NL, Kunasol, P, Kim, JH (2009) Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand. New Engl J Med 361: pp. 2209-2220 CrossRef
    7. de Souza, MS, Ratto-Kim, S, Chuenarom, W, Schuetz, A, Chantakulkij, S, Nuntapinit, B, Valencia-Micolta, A, Thelian, D, Nitayaphan, S, Pitisuttithum, P, Paris, RM, Kaewkungwal, J, Michael, NL, Rerks-Ngarm, S, Mathieson, B, Marovich, M, Currier, JR, Kim, JH (2012) The Thai Phase III Trial (RV144) Vaccine Regimen Induces T Cell Responses That Preferentially Target Epitopes within the V2 Region of HIV-1 Envelope. J Immunol 188: pp. 5166-5176 CrossRef
    8. Harouse, JM, Bhat, S, Spitalnik, SL, Laughlin, M, Stefano, K, Silberberg, DH, Gonzalez-Scarano, F (1991) Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science 253: pp. 320-323 CrossRef
    9. Blumenthal, R, Durell, S, Viard, M (2012) HIV entry and envelope glycoprotein-mediated fusion. J Biol Chem 287: pp. 40841-40849 CrossRef
    10. Stein, BS, Gowda, SD, Lifson, JD, Penhallow, RC, Bensch, KG, Engleman, EG (1987) pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane. Cell 49: pp. 659-668 CrossRef
    11. Cai, L, Gochin, M, Liu, K (2011) Biochemistry and biophysics of HIV-1 gp41 - membrane interactions and implications for HIV-1 envelope protein mediated viral-cell fusion and fusion inhibitor design. Curr Top Med Chem 11: pp. 2959-2984 CrossRef
    12. Leroux, C, Cadore, JL, Montelaro, RC (2004) Equine Infectious Anemia Virus (EIAV): what has HIV鈥檚 country cousin got to tell us?. Veterinary Res 35: pp. 485-512 CrossRef
    13. Li, HG, Zhang, XY, Fan, XJ, Shen, T, Tong, X, Shen, RX, Shao, YM (2005) A conservative domain shared by HIV gp120 and EIAV gp90: Implications for HIV vaccine design. Aids Res Human Retrov 21: pp. 1057-1059 CrossRef
    14. Berger, EA, Murphy, PM, Farber, JM (1999) Chemokine receptors as HIV-1 coreceptors: Roles in viral entry, tropism, and disease. Ann Rev Immunol 17: pp. 657-700 CrossRef
    15. Greenberg, M, Cammack, N, Salgo, M, Smiley, L (2004) HIV fusion and its inhibition in antiretroviral therapy. Rev Med Virol 14: pp. 321-337 CrossRef
    16. LaBranche, CC, Galasso, G, Moore, JP, Bolognesi, DP, Hirsch, MS, Hammer, SM (2001) HIV fusion and its inhibition. Antiviral Res 50: pp. 95-115 CrossRef
    17. Kliger, Y, Shai, Y (2000) Inhibition of HIV-1 entry before gp41 folds into its fusion-active conformation. J Mol Biol 295: pp. 163-168 CrossRef
    18. Bar, KJ, Decker, JM, Ganusov, VV, Li, H, McLellan, JS, Yang, Y, Pavlicek, JW, Keele, BF, Gao, F, Perelson, AS, Kwong, PD, Hahn, BH, Shaw, GM (2010) Molecular targets and potency of HIV-1 neutralization revealed by dynamic assessment of transmitted/founder virus antibody recognition and escape. Aids Res Human Retrov 26: pp. A11-A12
    19. Wei, XP, Decker, JM, Wang, SY, Hui, HX, Kappes, JC, Wu, XY, Salazar-Gonzalez, JF, Salazar, MG, Kilby, JM, Saag, MS, Komarova, NL, Nowak, MA, Hahn, BH, Kwong, PD, Shaw, GM (2003) Antibody neutralization and escape by HIV-1. Nature 422: pp. 307-312 CrossRef
    20. Huang, JH, Ofek, G, Laub, L, Louder, MK, Doria-Rose, NA, Longo, NS, Imamichi, H, Bailer, RT, Chakrabarti, B, Sharma, SK, Alam, SM, Wang, T, Yang, YP, Zhang, BS, Migueles, SA, Wyatt, R, Haynes, BF, Kwong, PD, Mascola, JR, Connors, M (2012) Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491: pp. 406 CrossRef
    21. Chen, Y, Zhang, JS, Hwang, KK, Bouton-Verville, H, Xia, SM, Newman, A, Ouyang, YB, Haynes, BF, Verkoczy, L (2013) Common tolerance mechanisms, but distinct cross-reactivities associated with gp41 and lipids, limit production of HIV-1 broad neutralizing antibodies 2聽F5 and 4E10. J Immunol 191: pp. 1260-1275 CrossRef
    22. Lu, L, Pan, C, Li, Y, Lu, H, He, W, Jiang, S (2012) A bivalent recombinant protein inactivates HIV-1 by targeting the gp41 prehairpin fusion intermediate induced by CD4 D1D2 domains. Retrovirology 9: pp. 104 CrossRef
    23. Yang, ZN, Mueser, TC, Kaufman, J, Stahl, SJ, Wingfield, PT, Hyde, CC (1999) The crystal structure of the SIV gp41 ectodomain at 1.47 angstrom resolution. J Struct Biol 126: pp. 131-144 CrossRef
    24. Malashkevich, VN, Chan, DC, Chutkowski, CT, Kim, PS (1998) Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: Conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc Natl Acad Sci USA 95: pp. 9134-9139 CrossRef
    25. Weissenhorn, W, Dessen, A, Harrison, SC, Skehel, JJ, Wiley, DC (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387: pp. 426-430 CrossRef
    26. Tan, K, Liu, J, Wang, J, Shen, S, Lu, M (1997) Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci USA 94: pp. 12303-12308 CrossRef
    27. Chan, DC, Fass, D, Berger, JM, Kim, PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89: pp. 263-273 CrossRef
    28. Maeso, R, Huarte, N, Julien, JP, Kunert, R, Pai, EF, Nieva, JL (2011) Interaction of anti-HIV type 1 antibody 2F5 with phospholipid bilayers and its relevance for the mechanism of virus neutralization. AIDS Res Hum Retrov 27: pp. 863-876 CrossRef
    29. Du, J, Xue, H, Ma, J, Liu, F, Zhou, J, Shao, Y, Qiao, W, Liu, X (2013) The crystal structure of HIV CRF07 B鈥?C gp41 reveals a hyper-mutant site in the middle of HR2 heptad repeat. Virology 446: pp. 86-94 CrossRef
    30. Buzon, V, Natrajan, G, Schibli, D, Campelo, F, Kozlov, MM, Weissenhorn, W (2010) Crystal structure of HIV-1 gp41 including both fusion peptide and membrane proximal external regions. PLoS Pathog 6: pp. e1000880 CrossRef
    31. Craigo, JK, Montelaro, RC (2013) Lessons in AIDS vaccine development learned from studies of equine infectious, anemia virus infection and immunity. Viruses 5: pp. 2963-2976 CrossRef
    32. Anderson, LJ (2013) Respiratory syncytial virus vaccine development. Semin Immunol 25: pp. 160-171 CrossRef
    33. Uhl, EW, Heaton-Jones, TG, Pu, R, Yamamoto, JK (2002) FIV vaccine development and its importance to veterinary and human medicine: a review FIV vaccine 2002 update and review. Vet Immunol Immunopathol 90: pp. 113-132 CrossRef
    34. Shen, RX, Wang, Z (1985) Development and use of an equine infectious anemia donkey leucocyte attenuated vaccine. In: Tashjian RJ, Zarish, D, Equine Infectious Anaemia A National Review of Policies, Programs and Future Objectives.
    35. Craigo, JK, Barnes, S, Cook, SJ, Issel, CJ, Montelaro, RC (2010) Divergence, not diversity of an attenuated equine lentivirus vaccine strain correlates with protection from disease. Vaccine 28: pp. 8095-8104 CrossRef
    36. Wang, X, Wang, S, Lin, Y, Jiang, C, Ma, J, Zhao, L, Lv, X, Wang, F, Shen, R, Kong, X, Zhou, J (2011) Genomic comparison between attenuated Chinese equine infectious anemia virus vaccine strains and their parental virulent strains. Arch Virol 156: pp. 353-357 CrossRef
    37. Liang, H, He, X, Shen, RX, Shen, T, Tong, X, Ma, Y, Xiang, WH, Zhang, XY, Shao, YM (2006) Combined amino acid mutations occurring in the envelope closely correlate with pathogenicity of EIAV. Arch Virol 151: pp. 1387-1403 CrossRef
    38. Suntoke, TR, Chan, DC (2005) The fusion activity of HIV-1 gp41 depends on interhelical interactions. J Biolog Chem 280: pp. 19852-19857 CrossRef
    39. Julien, JP, Cupo, A, Sok, D, Stanfield, RL, Lyumkis, D, Deller, MC, Klasse, PJ, Burton, DR, Sanders, RW, Moore, JP, Ward, AB, Wilson, IA (2013) Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 342: pp. 1477-1483 CrossRef
    40. Shen, T, Liang, H, Tong, X, Fan, XJ, He, X, Ma, Y, Xiang, WH, Shen, RX, Zhang, XY, Shao, YM (2006) Amino acid mutations of the infectious clone from Chinese EIAV attenuated vaccine resulted in reversion of virulence. Vaccine 24: pp. 738-749 CrossRef
    41. Gallo, SA, Finnegan, CM, Viard, M, Raviv, Y, Dimitrov, A, Rawat, SS, Puri, A, Durell, S, Blumenthal, R (2003) The HIV Env-mediated fusion reaction. Biochimica Et Biophysica Acta-Biomembranes 1614: pp. 36-50 CrossRef
    42. Cook, RF, Cook, SJ, Berger, SL, Leroux, C, Ghabrial, NN, Gantz, M, Bolin, PS, Mousel, MR, Montelaro, RC, Issel, CJ (2003) Enhancement of equine infectious anemia virus virulence by identification and removal of suboptimal nucleotides. Virology 313: pp. 588-603 CrossRef
    43. Colman, PM, Lawrence, MC (2003) The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 4: pp. 309-319 CrossRef
    44. Peisajovich, SG, Epand, RF, Pritsker, M, Shai, Y, Epand, RM (2000) The polar region consecutive to the HIV fusion peptide participates in membrane fusion. Biochemistry 39: pp. 1826-1833 CrossRef
    45. Sen, J, Yan, TR, Wang, JZ, Rong, LJ, Tao, L, Caffrey, M (2010) Alanine scanning mutagenesis of HIV-1 gp41 heptad repeat 1: insight into the gp120-gp41 interaction. Biochemistry 49: pp. 5057-5065 CrossRef
    46. Finzi, A, Xiang, SH, Pacheco, B, Wang, LP, Haight, J, Kassa, A, Danek, B, Pancera, M, Kwong, PD, Sodroski, J (2010) Topological layers in the HIV-1 gp120 inner domain regulate gp41 interaction and CD4-triggered conformational transitions. Mol Cell 37: pp. 656-667 CrossRef
    47. Rigter, A, Widjaja, I, Versantvoort, H, Coenjaerts, FE, van Roosmalen, M, Leenhouts, K, Rottier, PJ, Haijema, BJ, de Haan, CA (2013) A protective and safe intranasal RSV vaccine based on a recombinant prefusion-like form of the F protein bound to bacterium-like particles. PLoS One 8: pp. e71072 CrossRef
    48. Jiang, CG, Ma, J, Gao, X, Lin, YZ, Zhao, LP, Hua, YP, Liu, D, Zhou, JH (2010) Effects on in vitro replication of equine infectious anemia virus attenuated vaccine strain with truncated mutation in the transmembrane protein. Prog Biochem Biophys 37: pp. 261-268 CrossRef
    49. Zhang, BS, Jin, S, Jin, J, Li, F, Montelaro, RC (2005) A tumor necrosis factor receptor family protein serves as a cellular receptor for the macrophage-tropic equine lentivirus. Proc Natl Acad Sci USA 102: pp. 9918-9923 CrossRef
    50. He, J, Chen, Y, Farzan, M, Choe, H, Ohagen, A, Gartner, S, Busciglio, J, Yang, X, Hofmann, W, Newman, W, Mackay, CR, Sodroski, J, Gabuzda, D (1997) CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385: pp. 645-649 CrossRef
    51. Hoxie, JA, LaBranche, CC, Endres, MJ, Turner, JD, Berson, JF, Doms, RW, Matthews, TJ (1998) CD4-independent utilization of the CXCR4 chemokine receptor by HIV-1 and HIV-2. J Reprod Immunol 41: pp. 197-211 CrossRef
    52. Craigo, JK, Montelaro, RC (2011) Equine infectious anemia virus infection and immunity: lessons for aids vaccine development. Future Virol 6: pp. 139-142 CrossRef
    53. Craigo, JK, Montelaro, RC (2010) EIAV envelope diversity: shaping viral persistence and encumbering vaccine efficacy. Curr HIV Res 8: pp. 81-86 CrossRef
    54. Lyumkis, D, Julien, JP, de Val, N, Cupo, A, Potter, CS, Klasse, PJ, Burton, DR, Sanders, RW, Moore, JP, Carragher, B, Wilson, IA, Ward, AB (2013) Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 342: pp. 1484-1490 CrossRef
    55. WM, ZO (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol 276: pp. 307-326 CrossRef
    56. Winn, MD, Ballard, CC, Cowtan, KD, Dodson, EJ, Emsley, P, Evans, PR, Keegan, RM, Krissinel, EB, Leslie, AGW, McCoy, A, McNicholas, SJ, Murshudoy, GN, Pannu, NS, Potterton, EA, Powell, HR, Read, RJ, Vagin, A, Wilson, KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallographica Sec D-Biolog Crystallog 67: pp. 235-242 CrossRef
    57. Adams, PD, Afonine, PV, Bunkoczi, G, Chen, VB, Davis, IW, Echols, N, Headd, JJ, Hung, LW, Kapral, GJ, Grosse-Kunstleve, RW, McCoy, AJ, Moriarty, NW, Oeffner, R, Read, RJ, Richardson, DC, Richardson, JS, Terwilliger, TC, Zwart, PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Sec D-Biolog Crystallog 66: pp. 213-221 CrossRef
    58. Emsley, P, Lohkamp, B, Scott, WG, Cowtan, K (2010) Features and development of Coot. Acta Crystallographica Sec D-Biolog Crystallog 66: pp. 486-501 CrossRef
    59. Pozdnyakova, I, Regan, L (2005) New insights into Fragile X syndrome - Relating genotype to phenotype at the molecular level. Febs J 272: pp. 872-878 CrossRef
  • 刊物主题:Virology; Infectious Diseases; Cancer Research;
  • 出版者:BioMed Central
  • ISSN:1742-4690
文摘
Background The equine infectious anemia virus (EIAV) is a lentivirus of the Retrovirus family, which causes persistent infection in horses often characterized by recurrent episodes of high fever. It has a similar morphology and life cycle to the human immunodeficiency virus (HIV). Its transmembrane glycoprotein, gp45 (analogous to gp41 in HIV), mediates membrane fusion during the infection. However, the post-fusion conformation of EIAV gp45 has not yet been determined. EIAV is the first member of the lentiviruses for which an effective vaccine has been successfully developed. The attenuated vaccine strain, FDDV, has been produced from a pathogenic strain by a series of passages in donkey dermal cells. We have previously reported that a V/I505T mutation in gp45, in combination with other mutations in gp90, may potentially contribute to the success of the vaccine strain. To this end, we now report on our structural and biochemical studies of the gp45 protein from both wide type and vaccine strain, providing a valuable structural model for the advancement of the EIAV vaccine. Results We resolved crystal structures of the ecto-domain of gp45 from both the wild-type EIAV and the vaccine strain FDDV. We found that the V/I505T mutation in gp45 was located in a highly conserved d position within the heptad repeat, which protruded into a 3-fold symmetry axis within the six-helix bundle. Our crystal structure analyses revealed a shift of a hydrophobic to hydrophilic interaction due to this specific mutation, and further biochemical and virological studies confirmed that the mutation reduced the overall stability of the six-helix bundle in post-fusion conformation. Moreover, we found that altering the temperatures drastically affected the viral infectivity. Conclusions Our high-resolution crystal structures of gp45 exhibited high conservation between the gp45/gp41 structures of lentiviruses. In addition, a hydrophobic to hydrophilic interaction change in the EIAV vaccine strain was found to modulate the stability and thermal-sensitivity of the overall gp45 structure. Our observations suggest that lowering the stability of the six-helix bundle (post-fusion), which may stabilizes the pre-fusion conformation, might be one of the reasons of acquired dominance for FDDV in viral attenuation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700