Small Amounts of Sub-Visible Aggregates Enhance the Immunogenic Potential of Monoclonal Antibody Therapeutics
详细信息    查看全文
  • 作者:Maryam Ahmadi (1)
    Christine J. Bryson (1) (4)
    Edward A. Cloake (1)
    Katie Welch (1)
    Vasco Filipe (2) (5)
    Stefan Romeijn (2)
    Andrea Hawe (3)
    Wim Jiskoot (2)
    Matthew P. Baker (1)
    Mark H. Fogg (1)

    1. Antitope Ltd
    ; Babraham Research Campus ; Babraham ; Cambridge ; CB22 3AT ; UK
    4. Department of Haematology
    ; Cambridge University Hospitals ; Hills Road ; Cambridge ; CB2 0QQ ; UK
    2. Division of Drug Delivery Technology
    ; Leiden Academic Centre for Drug Research ; Leiden University ; Leiden ; The Netherlands
    5. Adocia
    ; 115 Avenue Lacassagne ; 69003 ; Lyon ; France
    3. Coriolis Pharma
    ; Am Klopferspitz 19 ; 82152 ; Martinsried ; Germany
  • 关键词:anti ; drug antibodies ; biotherapeutics ; CD4+ T cell responses ; humanized antibodies ; immunogenicity
  • 刊名:Pharmaceutical Research
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:32
  • 期:4
  • 页码:1383-1394
  • 全文大小:3,862 KB
  • 参考文献:1. Fehr, T, Bachmann, MF, Bucher, E, Kalinke, U, Padova, FE, Lang, AB (1997) Role of repetitive antigen patterns for induction of antibodies against antibodies. J Exp Med 185: pp. 1785-92 CrossRef
    2. Bachmann, MF, Rohrer, UH, K眉ndig, TM, Burki, K, Hengartner, H, Zinkernagel, RM (1993) The influence of antigen organization on B cell responsiveness. Science 262: pp. 1448-51 CrossRef
    3. Joubert, MK, Hokom, M, Eakin, C, Zhou, L, Deshpande, M, Baker, MP (2012) Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J Biol Chem 287: pp. 25266-79 CrossRef
    4. Fehr, T, Naim, HY, Bachmann, MF, Ochsenbein, AF, Spielhofer, P, Bucher, E (1998) T-cell independent IgM and enduring protective IgG antibodies induced by chimeric measles viruses. Nat Med 4: pp. 945-8 CrossRef
    5. Kreuz, W, Ettingshausen, CE, Zyschka, A, Oldenburg, J, Saguer, IM, Ehrenforth, S (2002) Inhibitor development in previously untreated patients with hemophilia A: a prospective long-term follow-up comparing plasma-derived and recombinant products. Semin Thromb Hemost 28: pp. 285-90 CrossRef
    6. Mahler, H-C, Friess, W, Grauschopf, U, Kiese, S (2009) Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 98: pp. 2909-34 CrossRef
    7. Singh, SK, Afonina, N, Awwad, M, Bechtold-Peters, K, Blue, JT, Chou, D (2010) An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci 99: pp. 3302-21 CrossRef
    8. Brange, J, Langkjaer, L, Havelund, S, V酶lund, A (1992) Chemical stability of insulin. 1. hydrolytic degradation during storage of pharmaceutical preparations. Pharm Res 9: pp. 715-26 CrossRef
    9. Manning, MC, Chou, DK, Murphy, BM, Payne, RW, Katayama, DS (2010) Stability of protein pharmaceuticals: an update. Pharm Res 27: pp. 544-575 CrossRef
    10. Torosantucci, R, Sch枚neich, C, Jiskoot, W (2014) Oxidation of therapeutic proteins and peptides: structural and biological consequences. Pharm Res 31: pp. 541-553 CrossRef
    11. Bee, JS, Stevenson, JL, Mehta, B, Svitel, J, Pollastrini, J, Platz, R (2009) Response of a concentrated monoclonal antibody formulation to high shear. Biotechnol Bioeng 103: pp. 936-943 CrossRef
    12. Rombach-Riegraf, V, Karle, A, Wolf, B, Sorde, L, Koepke, S, Rombach-Riegraf, V (2014) Aggregation of human recombinant monoclonal antibodies influences the capacity of dendritic cells to stimulate adaptive T-cell responses in vitro. PLoS One 9: pp. e86322 CrossRef
    13. Filipe, V, Jiskoot, W, Basmeleh, AH, Halim, A, Schellekens, H, Brinks, V (2012) Immunogenicity of different stressed IgG monoclonal antibody formulations in immune tolerant transgenic mice. MAbs 4: pp. 740-752 CrossRef
    14. Filipe, V, Poole, R, Kutscher, M, Fourier, K, Braeckman, K, Jiskoot, W (2011) Fluorescence single particle tracking for the characterization of submicron protein aggregates in biological fluids and complex formulations. Pharm Res 28: pp. 1112-1120 CrossRef
    15. Filipe, V, Poole, R, Oladunjoye, O, Braeckmans, K, Jiskoot, W (2012) Detection and characterization of subvisible aggregates of monoclonal IgG in serum. Pharm Res 29: pp. 2202-2212 CrossRef
    16. Vollenhoven, RF, Emery, P, Bingham, CO, Keystone, EC, Fleischmann, R, Furst, DE (2010) Longterm Safety of Patients Receiving Rituximab in Rheumatoid Arthritis Clinical Trials. J Rheumatol 37: pp. 558-67 CrossRef
    17. Herceptin庐 [package insert] Genentech Inc, San Francisco, USA. http://www.gene.com/download/pdf/herceptin_prescribing.pdf
    18. Bryson, CJ, Jones, TD, Baker, MP (2010) Prediction of Immunogenicity of Therapeutic Proteins, Validity of Computational Tools. Biodrugs 24: pp. 1-8 CrossRef
    19. Sojka, DK, Bruniquel, D, Schwartz, RH, Singh, NJ (2004) IL-2 secretion by CD4+ T cells in vitro is rapid, transient, and influences by TCR-specific competition. J Immuno 172: pp. 6136-43
    20. Ozaki, K, Spolski, R, Feng, CG, Qi, CF, Chneg, J, Sher, A (2002) A critical role for IL-21 in regulating immunoglobulin production. Science 298: pp. 1630-4 CrossRef
    21. Zotos, D, Coquet, JM, Zhang, Y, Light, A, D鈥橩osta, K, Kallies, A (2010) IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J Exp Med 207: pp. 365-78 CrossRef
    22. Feng, X, Wang, D, Chen, J, Lu, L, Hua, B, Li, X (2012) Inhibition of Aberrant Circulating Tfh Cell Proportions by Corticosteroids in Patients with Systemic Lupus Erythematosus. PLoS One 7: pp. e51982 CrossRef
    23. Spolski, R, Leonard, WJ (2010) IL-21 is an immune activator that also mediates suppression via IL-10. Crit Rev Immunol 30: pp. 559-70 CrossRef
    24. Joubert, MK, Luo, Q, Nashed-Samuel, Y, Wypych, J, Narhi, LO (2011) Classification and characterization of therapeutic antibody aggregates. J Biol Chem 286: pp. 25118-33 CrossRef
    25. R枚nnelid, J, Tejde, A, Mathsson, L, Nilsson-Ekdahl, K, Nilsson, B (2003) Immune complexes from SLE sera induce IL10 production from normal peripheral blood mononuclear cells by an FcgammaRII dependent mechanism: implications for a possible vicious cycle maintaining B cell hyperactivity in SLE. Ann Rheum Dis 62: pp. 37-42 CrossRef
    26. Ahmadi, M, Emery, DC, Morgan, DJ (2008) Prevention of both direct and cross-priming of antitumor CD8+ T-cell responses following overproduction of prostaglandin E2 by tumor cells in vivo. Cancer Res 68: pp. 7520-9 CrossRef
    27. Steinbrink, K, Wolfl, M, Jonuleit, H, Knop, J, Enk, AH (1997) Induction of tolerance by IL-10-treated dendritic cells. J Immunol 159: pp. 4772-80
    28. McBride, JM, Jung, T, Vries, JE, Aversa, G (2002) IL-10 alters DC function via modulation of cell surface molecules resulting in impaired T-cell responses. Cell Immunol 215: pp. 162-72 CrossRef
    29. Enk, AH, Jonuleit, H, Saloga, J, Knop, J (1997) Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 73: pp. 309-16 CrossRef
    30. Dercamp, C, Chemin, K, Caux, C, Trinchieri, G, Vicari, AP (2005) Distinct and overlapping roles of interleukin-10 and CD25+ regulatory T cells in the inhibition of antitumor CD8 T-cell responses. Cancer Res 65: pp. 8479-86 CrossRef
    31. Pieters, J, Horstman, H, Bakk, O, Griffiths, G, Lipp, J (1991) Intracellular transport and localization of major histocompatibility complex class II molecules and associated invariant chain. J Cell Biol 115: pp. 1213-23 CrossRef
    32. Randolph, GJ, Inaba, K, Robbiani, DF, Steinman, RM, Muller, WA (1999) Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11: pp. 753-61 CrossRef
    33. Vecchi, A, Massimiliano, L, Ramponi, S, Luini, W, Bernasconi, S, Bonecchi, R (1999) Differential responsiveness to constitutive vs. inducible chemokines of immature and mature mouse dendritic cells. J Leukoc Biol 66: pp. 489-94
    34. Mianowska, B, Szadkowska, A, Pietrzak, I, Zmys艂owska, A, Wegner, O, Tomczonek, J (2011) Immunogenicity of different brands of human insulin and rapid-acting insulin analogs in insulin-na茂ve children with type 1 diabetes. Pediatr Diabetes 12: pp. 78-84 CrossRef
    35. Fathallah, AM, Bankert, RB, Balu-Iyer, SV (2013) Immunogenicity of subcutaneously administered therapeutic proteins鈥揳 mechanistic perspective. AAPS J 15: pp. 897-900 CrossRef
    36. Porter, CJ, Charman, SA (2000) Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci 89: pp. 297-310 CrossRef
    37. Ruedl, C, Koebel, P, Bachmann, M, Hess, M, Karjalainen, K (2000) Anatomical origin of dendritic cells determines their life span in peripheral lymph nodes. J Immunol 165: pp. 4910-6 CrossRef
    38. Hawe, A, Kasper, JC, Friess, W, Jiskoot, W (2009) Structural properties of monoclonal antibody aggregates induced by freeze-thawing and thermal stress. Eur J Pharm Sci 38: pp. 79-87 CrossRef
    39. Hermeling, S, Aranha, L, Damen, JMA, Slijper, M, Schellekens, H, Crommelin, DJA (2005) Structural characterization and immunogenicity in wild-type and immune tolerant mice of degraded recombinant human interferon alpha2b. Pharm Res 22: pp. 1997-2006 CrossRef
    40. Brinks V, Weinbuch D, Baker M, Dean Y, Stas P, Kostense S, / et al. Preclinical models used for immunogenicity prediction of therapeutic proteins. Pharm Res. 2013;30(7):1719鈥?8.
    41. Fradkin, AH, Carpenter, JF, Randolph, TW (2011) Glass particles as an adjuvant: a model for adverse immunogenicity of therapeutic proteins. J Pharm Sci 100: pp. 4953-4964 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Pharmacology and Toxicology
    Pharmacy
    Biochemistry
    Medical Law
    Biomedical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-904X
文摘
Purpose Determine the effect of minute quantities of sub-visible aggregates on the in vitro immunogenicity of clinically relevant protein therapeutics. Methods Monoclonal chimeric (rituximab) and humanized (trastuzumab) antibodies were subjected to fine-tuned stress conditions to achieve low levels (+ T cells with the aggregates was measured in vitro using cytokine secretion, proliferation and confocal microscopy. Results Due to its intrinsic high clinical immunogenicity, aggregation of rituximab had minimal effects on DC activation and T cell responses compared to monomeric rituximab. However, in the case of trastuzumab (low clinical immunogenicity) small quantities of aggregates led to potent CD4+ T cell proliferation as a result of strong cytokine and co-stimulatory signals derived from DC. Consistent with this, confocal studies showed that stir-stressed rituximab was rapidly internalised and associated with late endosomes of DC. Conclusions These data link minute amounts of aggregates with activation of the innate immune response, involving DC, resulting in T cell activation. Thus, when protein therapeutics with little or no clinical immunogenicity, such as trastuzumab, contain minute amounts of sub-visible aggregates, they are associated with significantly increased potential risk of clinical immunogenicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700