Fluorogenic Tagging Methodology Applied to Characterize Oxidized Tyrosine and Phenylalanine in an Immunoglobulin Monoclonal Antibody
详细信息    查看全文
  • 作者:Shuxia Zhou (1)
    Olivier Mozziconacci (1)
    Bruce A. Kerwin (2)
    Christian Sch?neich (1)
  • 关键词:ABS fluorogenic tagging/derivatization ; immunoglobulin G (IgG) monoclonal antibody (mAb) ; metal catalyzed oxidation (MCO) ; protein degradation ; reverse phase liquid chromatography with mass spectrometry (RPLC ; MS)
  • 刊名:Pharmaceutical Research
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:30
  • 期:5
  • 页码:1311-1327
  • 全文大小:1071KB
  • 参考文献:1. Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov. 2003;2:52-2. CrossRef
    2. Bebbington C, Yarranton G. Antibodies for the treatment of bacterial infections: current experience and future prospects. Curr Opin Biotechnol. 2008;19:613-. CrossRef
    3. Schrama D, Reisfeld RA, Becker JC. Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov. 2006;5:147-9. CrossRef
    4. Bee JS, Nelson SA, Freund E, Carpenter JF, Randolph TW. Precipitation of a monoclonal antibody by soluble tungsten. J Pharm Sci. 2009;98:3290-01. CrossRef
    5. Li S, Nguyen TH, Sch?neich C, Borchardt RT. Aggregation and precipitation of human Relaxin induced by metal-catalyzed oxidation. Biochemistry. 1995;34:5762-2. CrossRef
    6. Li S, Sch?neich C, Wilson GS, Borchardt RT. Chemical pathways of peptide degradation. V. ascorbic acid promotes rather than inhibits the oxidation of methionine to methionine sulfoxide in small model peptides. Pharm Res. 1993;10:1572-. CrossRef
    7. Stadtman ER. Metal Ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med. 1990;9:315-5. CrossRef
    8. Stadtman ER. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem. 1993;62:797-21. CrossRef
    9. Uversky VN, Li J, Fink AL. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular link between parkinson’s disease and heavy metal exposure. J Biol Chem. 2001;276:44284-6. CrossRef
    10. Zhao F, Ghezzo-Sch?neich E, Aced GI, Hong J, Milby T, Sch?neich C. Metal-catalyzed oxidation of histidine in human growth hormone. mechanism, isotope effects, and inhibition by a mild denaturing alcohol. J Biol Chem. 1997;272:9019-9. CrossRef
    11. Zhou S, Zhang B, Sturm E, Teagarden DL, Sch?neich C, Kolhe P, / et al. Comparative evaluation of disodium edetate and diethylenetriaminepentaacetic acid as iron chelators to prevent metal-catalyzed destabilization of a therapeutic monoclonal antibody. J Pharm Sci. 2010;99:4239-0. CrossRef
    12. Sch?neich C. Selective Cu2+/ascorbate-Dependent Oxidation of Alzheimer’s Disease Beta-Amyloid Peptides. Ann N Y Acad Sci. 2004;1012:164-0. CrossRef
    13. Sch?neich C. Mechanisms of metal-catalyzed oxidation of histidine to 2-oxo-Histidine in peptides and proteins. J Pharm Biomed Anal. 2000;21:1093-. CrossRef
    14. Luo Q, Joubert MK, Stevenson R, Ketchem RR, Narhi LO, Wypych J. Chemical modifications in therapeutic protein aggregates generated under different stress conditions. J Biol Chem. 2011;286:25134-4. CrossRef
    15. Limand J, Vachet RW. Development of a methodology based on metal-catalyzed oxidation reactions and mass spectrometry to determine the metal binding sites in copper metalloproteins. Anal Chem. 2003;75:1164-2. CrossRef
    16. Sch?neich C, Williams TD. Cu(II)-Catalyzed Oxidation of Beta-Amyloid Peptide Targets His13 and His14 over His6: Detection of 2-Oxo-Histidine by HPLC-MS/MS. Chem Res Toxicol. 2002;15:717-2. CrossRef
    17. Sch?neich C, Williams TD. Cu(II)-Catalyzed Oxidation of Alzheimer’s Disease Beta-Amyloid Peptide and Related Sequences: remarkably different selectivities of neurotoxic βAP1-40 and Non-Toxic βAP40-1. Cell Mol Biol. 2003;49:753-1.
    18. Torosantucci R, Mozziconacci O, Sharov V, Sch?neich C, Jiskoot W. Chemical Modifications in Aggregates of Recombinant Human Insulin Induced by Metal-Catalyzed Oxidation: covalent cross-linking via michael addition to tyrosine oxidation products. Pharm Res. 2012;29:2276-3. CrossRef
    19. Dubinina EE, Gavrovskaya SV, Kuzmich EV, Leonova NV, Morozova MG, Kovrugina SV, / et al. Oxidative modification of proteins: oxidation of tryptophan and production of dityrosine in purified proteins using Fenton’s system. Biochemistry. 2002;67:343-0.
    20. Huggins TG, Wells-Knecht MC, Detorie NA, Baynes JW, Thorpe SR. Formation of o-Tyrosine and Dityrosine in Proteins During Radiolytic and Metal-Catalyzed Oxidation. J Biol Chem. 1993;268:12341-.
    21. Sharov VS, Dremina ES, Galeva NA, Gerstenecker GS, Li X, Dobrowsky RT, / et al. Fluorogenic Tagging of Peptide and Protein 3-Nitrotyrosine with 4-(Aminomethyl)-benzenesulfonic Acid for Quantitative Analysis of Protein Tyrosine Nitration. Chromatographia. 2010;71:37-3. CrossRef
    22. Zhou S, Evans B, Sch?neich C, Singh SK. Biotherapeutic Formulation Factors Affecting Metal Leachables from Stainless Steel Studied by Design of Experiments. AAPS PharmSciTech. 2012;13:284-4. CrossRef
    23. Zhou S, Sch?neich C, Singh SK. Biologics Formulation Factors Affecting Metal Leachables from Stainless Steel. AAPS PharmSciTech. 2011;12:411-1. CrossRef
    24. Zhou S, Singh S, Lewis L. Metal Leachables in Therapeutic Biologic Products: Origin, Impact and Detection. Am Pharm Rev. 2010;13:76-0.
    25. Ferrige AG, Seddon MJ, Green BN, Jarvis SA, Skilling J. Disentangling Electrospray Spectra with Maximum-Entropy. Rapid Commun Mass Spec. 1992;6:707-1. CrossRef
    26. Ferrige AG, Seddon MJ, Jarvis S. Maximum-Entropy Deconvolution in Electrospray Mass-Spectrometry. Rapid Commun Mass Spec. 1991;5:374-. CrossRef
    27. Ferrige AG, Seddon MJ, Skilling J, Ordsmith N. The Application of Maxent to High-Resolution Mass-Spectrometry. Rapid Commun Mass Spec. 1992;6:765-0. CrossRef
    28. Shevchenko A, Wilm M, Vorm O, Mann M. Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Anal Chem. 1996;68:850-. CrossRef
    29. Ikehata K, Duzhak TG, Galeva NA, Ji T, Koen YM, Hanzlik RP. Protein Targets of Reactive Metabolites of Thiobenzamide in Rat Liver / in Vivo. Chem Res Toxicol. 2008;21:1432-2. CrossRef
    30. Xu H, Freitas MA. A Mass Accuracy Sensitive Probability Based Scoring Algorithm for Database Searching of Tandem Mass Spectrometry Data. BMC Bioinforma. 2007;8:133. CrossRef
    31. Xu H, Freitas MA. MassMatrix: a Database Search Program for Rapid Characterization of Proteins and Peptides from Tandem Mass Spectrometry Data. Proteomics. 2009;9:1548-5. CrossRef
    32. Xu H, Yang L, Freitas MA. A Robust Linear Regression Based Algorithm for Automated Evaluation of Peptide Identifications from Shotgun Proteomics by Use of Reversed-Phase Liquid Chromatography Retention Time. BMC Bioinforma. 2008;9:347. CrossRef
    33. Roepstorff P, Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 1984;11:601. CrossRef
    34. Kaur H, Fagerheim I, Grootveld M, Puppo A, Halliwell B. Aromatic Hydroxylation of Phenylalanine as an Assay for Hydroxyl Radicals: Application to Activated Human Neutrophils and to the Heme Protein Leghemoglobin. Anal Biochem. 1988;172:360-. CrossRef
    35. Shacter E. Quantification and Significance of Protein Oxidation in Biological Samples. Drug Metab Rev. 2000;32:307-6. CrossRef
    36. Sch?neich C, Sharov VS. Mass Spectrometry of Protein Modifications by Reactive Oxygen and Nitrogen Species. Free Radic Biol Med. 2006;41:1507-0. CrossRef
  • 作者单位:Shuxia Zhou (1)
    Olivier Mozziconacci (1)
    Bruce A. Kerwin (2)
    Christian Sch?neich (1)

    1. Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas, 66047, USA
    2. Department of Process and Product Development, Amgen Inc., 1201 Amgen Court West, Seattle, Washington, 98119, USA
  • ISSN:1573-904X
文摘
Purpose Metal-catalyzed oxidation (MCO) of proteins is of primary concern in the development of biotherapeutics as it represents a prominent degradation pathway with potential undesired biological and biotherapeutic consequences. Methods We developed a fluorogenic derivatization methodology to study the MCO of IgG1 using a model oxidation system, CuCl2/L-ascorbic acid. Results Besides the oxidation of Met, Trp and His residues, we detected significant oxidation of Phe and Tyr in IgG1. Conclusion The fluorogenic derivatization method provides an alternative approach for the rapid detection of oxidized Tyr and Phe as their benzoxazole derivatives by fluorescence spectrometry and size exclusion chromatography coupled to fluorescence detection.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700