Cadmium and cellular signaling cascades: interactions between cell death and survival pathways
详细信息    查看全文
  • 作者:Frank Thévenod (1)
    Wing-Kee Lee (1)
  • 关键词:BiP/GRP78 ; CHOP ; ERAD ; MAPK transition metal
  • 刊名:Archives of Toxicology
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:87
  • 期:10
  • 页码:1743-1786
  • 全文大小:
  • 作者单位:Frank Thévenod (1)
    Wing-Kee Lee (1)

    1. Faculty of Health, Institute of Physiology and Pathophysiology, Centre for Biomedical Training and Research (ZBAF), Private University of Witten/Herdecke, 58453, Witten, Germany
  • ISSN:1432-0738
文摘
Cellular stress elicited by the toxic metal Cd2+ does not coerce the cell into committing to die from the onset. Rather, detoxification and adaptive processes are triggered concurrently, allowing survival until normal function is restored. With high Cd2+, death pathways predominate. However, if sublethal stress levels affect cells for prolonged periods, as in chronic low Cd2+ exposure, adaptive and survival mechanisms may deregulate, such that tumorigenesis ensues. Hence, death and malignancy are the two ends of a continuum of cellular responses to Cd2+, determined by magnitude and duration of Cd2+ stress. Signaling cascades are the key factors affecting cellular reactions to Cd2+. This review critically surveys recent literature to outline major features of death and survival signaling pathways as well as their activation, interactions and cross talk in cells exposed to Cd2+. Under physiological conditions, receptor activation generates 2nd messengers, which are short-lived and act specifically on effectors through their spatial and temporal dynamics to transiently alter effector activity. Cd2+ recruits physiological 2nd messenger systems, in particular Ca2+ and reactive oxygen species (ROS), which control key Ca2+- and redox-sensitive molecular switches dictating cell function and fate. Severe ROS/Ca2+ signals activate cell death effectors (ceramides, ASK1-JNK/p38, calpains, caspases) and/or cause irreversible damage to vital organelles, such as mitochondria and endoplasmic reticulum (ER), whereas low localized ROS/Ca2+ levels act as 2nd messengers promoting cellular adaptation and survival through signal transduction (ERK1/2, PI3K/Akt-PKB) and transcriptional regulators (Ref1-Nrf2, NF-κB, Wnt, AP-1, bestrophin-3). Other cellular proteins and processes targeted by ROS/Ca2+ (metallothioneins, Bcl-2 proteins, ubiquitin–proteasome system, ER stress-associated unfolded protein response, autophagy, cell cycle) can evoke death or survival. Hence, temporary or permanent disruptions of ROS/Ca2+ induced by Cd2+ play a crucial role in eliciting, modulating and linking downstream cell death and adaptive and survival signaling cascades.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700