Thermometry during coblation and radiofrequency ablation of vertebral metastases: a cadaver study
详细信息    查看全文
  • 作者:Simon F. Groetz (1)
    Klaus Birnbaum (2)
    Carsten Meyer (1)
    Holger Strunk (1)
    Hans H. Schild (1)
    Kai E. Wilhelm (1)
  • 关键词:Spine ; Metastases ; RFA ; Coblation
  • 刊名:European Spine Journal
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:22
  • 期:6
  • 页码:1389-1393
  • 全文大小:297KB
  • 参考文献:1. Wong DA, Fornasier VL, MacNab I (1990) Spinal metastases: the obvious, the occult, and the impostors. Spine 15:1- CrossRef
    2. Byrne TN (1992) Spinal cord compression from epidural metastases. N Engl J Med 327:614-19 CrossRef
    3. Toyota N, Naito A, Kakizawa H et al (2005) Radiofrequency ablation therapy combined with cementoplasty for painful bone metastases: initial experience. Cardiovasc Intervent Radiol 28:578-83 CrossRef
    4. Salagierski M, Salagierski MS, Salagierska-Barwińska A (2010) Radiofrequency ablation in kidney tumour management: a method of real-time monitoring. Scand J Urol Nephrol 44:84-0 CrossRef
    5. Minami Y, Kudo M (2010) Radiofrequency ablation of hepatocellular carcinoma: current status. World J Radiol 2:417-24 CrossRef
    6. Hempfing A, Hoffend J, Bitsch RG et al (2007) The indication for gamma probe-guided surgery of spinal osteoid osteomas. Eur Spine J 16(10):1668-672
    7. Clasen S, Pereira PL (2009) Radiofrequency ablation—technical basics. In: Mahnken AH, Ricke J (eds) CT- and MR-guided interventions in radiology. Springer, Berlin, pp 159-66
    8. Chen YC, Lee SH, Saenz Y et al (2003) Histologic findings of disc, end plate and neural elements after coblation of nucleus pulposus: an experimental nucleoplasty study. Spine J 3:466-70 CrossRef
    9. Georgy BA (2009) Bone cement deposition patterns with plasma-mediated radio-frequency ablation and cement augmentation for advanced metastatic spine lesions. AJNR Am J Neuroradiol 30:1197-202 CrossRef
    10. Jakanani GC, Jaiveer S, Ashford R et al (2010) Computed tomography-guided coblation and cementoplasty of a painful acetabular metastasis: an effective palliative treatment. J Palliat Med 13:83-5 CrossRef
    11. Gerszten PC, Monaco EA (2009) Complete percutaneous treatment of vertebral body tumors causing spinal canal compromise using a transpedicular cavitation, cement augmentation, and radiosurgical technique. Neurosurg Focus 27:E9 CrossRef
    12. Haveman J, Sminia P, Wondergem J et al (2005) Effects of hyperthermia on the central nervous system: what was learnt from animal studies? Int J Hyperthermia 21:473-87 CrossRef
    13. Wondergem J, Haveman J, Rusman V et al (1988) Effects of local hyperthermia on the motor function of the rat sciatic nerve. Int J Radiat Biol Relat Stud Phys Chem Med 53:429-38 CrossRef
    14. Letcher FS, Goldring S (1968) The effect of radiofrequency current and heat on peripheral nerve action potential in the cat. J Neurosurg 29:42-7 CrossRef
    15. Yamane T, Tateishi A, Cho S et al (1992) The effects of hyperthermia on the spinal cord. Spine 17:1386-391 CrossRef
    16. Froese G, Das RM, Dunscombe PB (1991) The sensitivity of the thoracolumbar spinal cord of the mouse to hyperthermia. Radiat Res 125:173-80 CrossRef
    17. Adachi A, Kaminou T, Ogawa T et al (2008) Heat distribution in the spinal canal during radiofrequency ablation for vertebral lesions: study in swine. Radiology 247:374-80 CrossRef
    18. Wegener B, Zolyniak N, Gülecyüz MF et al (2012) Heat distribution of polymerisation temperature of bone cement on the spinal canal during vertebroplasty. Int Orthop 36:1025-030 CrossRef
    19. Kawai T, Kaminou T, Sugiura K et al (2009) Creation of a tumor-mimic model using a muscle paste for radiofrequency ablation of the lung. Cardiovasc Intervent Radiol 32:296-02 CrossRef
    20. Dupuy DE, Hong R, Oliver B et al (2000) Radiofrequency ablation of spinal tumors: temperature distribution in the spinal canal. AJR Am J Roentgenol 175:1263-266 CrossRef
    21. Diehn FE, Neeman Z, Hvizda JL et al (2003) Remote thermometry to avoid complications in radiofrequency ablation. J Vasc Interv Radiol 14:1569-576 CrossRef
    22. Nour SG, Aschoff AJ, Mitchell ICS et al (2002) MR imaging-guided radio-frequency thermal ablation of the lumbar vertebrae in porcine models. Radiology 224:452-62 CrossRef
    23. Nakatsuka A, Yamakado K, Maeda M et al (2004) Radiofrequency ablation combined with bone cement injection for the treatment of bone malignancies. J Vasc Interv Radiol 15:707-12 CrossRef
    24. Nakatsuka A, Yamakado K, Takaki H et al (2009) Percutaneous radiofrequency ablation of painful spinal tumors adjacent to the spinal cord with real-time monitoring of spinal canal temperature: a prospective study. Cardiovasc Intervent Radiol 32:70-5 CrossRef
    25. Anselmetti GC, Manca A, Kanika K et al (2009) Temperature measurement during polymerization of bone cement in percutaneous vertebroplasty: an in vivo study in humans. Cardiovasc Intervent Radiol 32:491-98 CrossRef
  • 作者单位:Simon F. Groetz (1)
    Klaus Birnbaum (2)
    Carsten Meyer (1)
    Holger Strunk (1)
    Hans H. Schild (1)
    Kai E. Wilhelm (1)

    1. Department of Radiology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
    2. Orthopaedic Clinic Hennef, Adenauerplatz 1, 53773, Hennef, Germany
  • ISSN:1432-0932
文摘
Purpose To evaluate safety of coblation of simulated lytic metastases in human cadaveric vertebral bodies by measuring heat distribution during thermal tissue ablation and comparing it to radiofrequency ablation (RFA). Materials and methods Three devices were compared: a 10?mm single-needle RFA electrode, a 20?mm array RFA electrode and the coblation device. To simulate bone metastases, a spinal tumor model was used stuffing a created lytic cavity with muscle tissue. Measuring of heat distribution was performed during thermal therapy within the vertebral body, in the epidural space and at the ipsilateral neural foramen. Eight vertebral bodies were used for each device. Results Temperatures at heat-sensitive neural structures during coblation were significantly lower than using RFA. Maximum temperatures measured at the end of the procedure at the neural foramen: 46.4?°C (±2.51; RFA 10?mm), 52.2?°C (±5.62; RFA 20?mm) and 42.5?°C (±2.88; coblation). Maximum temperatures in the epidural space: 46.8?°C (±4.7; RFA 10?mm), 49.5?°C (±6.48; RFA 20?mm) and 42.1?°C (±2.5; coblation). Maximum temperatures measured within the vertebral body: 50.6?°C (±10.48; RFA 10?mm), 61.9?°C (±15.39; RFA 20?mm) and 54.4?°C (±15.77; coblation). Conclusion In addition to RFA, the application of coblation is a safe method to ablate vertebral lesions with regards to heat distribution at heat-sensitive neural spots. The measured temperatures did not harbor danger of thermal damage to the spinal cord or the spinal nerves.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700