Device Modeling of Dye-Sensitized Solar Cells
详细信息    查看全文
  • 作者:Juan Bisquert (17)
    Rudolph A. Marcus (18)
  • 关键词:Dye solar cell ; Electron transport ; Nanomaterials ; Impedance spectroscopy
  • 刊名:Topics in Current Chemistry
  • 出版年:2014
  • 出版时间:2014
  • 年:2014
  • 卷:352
  • 期:1
  • 页码:325-395
  • 全文大小:1,612 KB
  • 参考文献:1. O’Regan B, Gr?tzel M (1991) A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737-40
    2. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Gr?tzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III) based redox electrolyte exceed 12 percent efficiency. Science 334:629-34
    3. Chang JA, Rhee JH, Im SH, Lee YH, Kim H-J, Seok SI, Nazeeruddin MK, Gr?tzel M (2010) High-performance nanostructured inorganic–organic heterojunction solar cells. Nano Lett 10:2609-612
    4. Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE, Gr?tzel M, Park N-G (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591
    5. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643-47
    6. Bignozzi CA, Argazzi R, Boaretto R, Busatto E, Carli S, Ronconi F, Caramori S (2013) The role of transition metal complexes in dye sensitized solar devices. Coord Chem Rev 257:1472-492
    7. Mora-Seró I, Bisquert J (2010) Breakthroughs in the development of semiconductor-sensitized solar cells. J Phys Chem Lett 1:3046-052
    8. Hodes G (2008) Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J Phys Chem C 112:17778-7787
    9. Dittrich T, Belaidi A, Ennaoui A (2011) Concepts of inorganic solid-state nanostructured solar cells. Sol Energ Mat Sol Cells 95(6):1527-536
    10. Fabregat-Santiago F, Bisquert J, Palomares E, Otero L, Kuang D, Zakeeruddin SM, Gr?tzel M (2007) Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J Phys Chem C 111:6550-560
    11. Barea EM, Ortiz J, Payá FJ, Fernández-Lázaro F, Fabregat-Santiago F, Sastre-Santos A, Bisquert J (2010) Energetic factors governing injection, regeneration and recombination in dye solar cells with phthalocyanine sensitizers. Energ Environ Sci 3:1985-994
    12. Bisquert J (2008) Physical electrochemistry of nanostructured devices. Phys Chem Chem Phys 10:49-2
    13. Ansari-Rad M, Anta JA, Bisquert J (2013) Interpretation of diffusion and recombination in nanostructured and energy disordered materials by stochastic quasiequilibrium simulation. J Phys Chem C. doi:10.1021/jp403232b
    14. Bisquert J, Mora-Seró I (2010) Simulation of steady-state characteristics of dye-sensitized solar cells and the interpretation of the diffusion length. J Phys Chem Lett 1:450-56
    15. S?dergren S, Hagfeldt A, Olsson J, Lindquist SE (1994) Theoretical models for the action spectrum and the current–voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J Phys Chem 98:5552-556
    16. Wang Q, Ito S, Gr?tzel M, Fabregat-Santiago F, Mora-Seró I, Bisquert J, Bessho T, Imai H (2006) Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B 110:19406-9411
    17. Nayak PK, Garcia-Belmonte G, Kahn A, Bisquert J, Cahen D (2012) Photovoltaic efficiency limits and material disorder. Energ Environ Sci 5:6022-039
    18. Halme J, Boschloo G, Hagfeldt A, Lund P (2008) Spectral characteristics of light harvesting, electron injection, and steady-state charge collection in pressed TiO2 dye solar cells. J Phys Chem C 112:5623-637
    19. Li L-L, Diau EW-G (2012) Porphyrin-sensitized solar cells. Chem Soc Rev 42:291-04
    20. Bertoluzzi L, Ma S (2013) On the methods of calculation of the charge collection efficiency of dye sensitized solar cells. Phys Chem Chem Phys 15:4283-285
    21. Usami A (1999) Rigorous solutions of light scattering of neighboring TiO2 particles in nanocrystalline films. Sol Energ Mat Sol Cells 59:163-66
    22. Usami A (2000) A theoretical simulation of light scattering of nanocrystalline films in photoelectrochemical solar cells. Sol Energ Mat Sol Cells 62:239-46
    23. Usami A (2000) Theoretical simulations of optical confinement in dye-sensitized nanocrystalline solar cells. Sol Energ Mat Sol Cells 64:73-3
    24. Tachibana Y, Hara K, Sayama K, Arakawa H (2002) Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells. Chem Mater 14:2527-535
    25. Galvez FE, Kemppainen E, Miguez H, Halme J (2012) Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description. J Phys Chem C 116:11426-1433
    26. Lin Y, Ma YT, Yang L, Xiao XR, Zhou XW, Li XP (2006) Computer simulations of light scattering and mass transport of dye-sensitized nanocrystalline solar cells. J Electroanal Chem 588:51-8
    27. Raga SR, Barea EM, Fabregat-Santiago F (2012) Analysis of the origin of open circuit voltage in dye solar cells. J Phys Chem Lett 3:1629-634
    28. Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, Bisquert J (2011) Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys Chem Chem Phys 13:9083-118
    29. Bisquert J, Fabregat-Santiago F (2010) Impedance spectroscopy: a general introduction and application to dye-sensitized solar cells. In: Kalyanasundaram K (ed) Dye-sensitized solar cells. CRC, Boca Raton
    30. Barea EM, Zafer C, Gultein B, Aydin B, Koyuncu S, Icli S, Fabregat-Santiago F, Bisquert J (2010) Quantification of the effects of recombination and injection in the performance of dye-sensitized solar cells based on N-substituted carbazole dyes. J Phys Chem C 114:19840-9848
    31. Barea EM, Gonzalez-Pedro V, Ripolles-Sanchis T, Wu H-P, Li L-L, Yeh C-Y, Diau EW-G, Bisquert J (2011) Porphyrin dyes with high injection and low recombination for highly efficient mesoscopic dye-sensitized solar cells. J Phys Chem C 115:10898-0902
    32. Zhou D, Bai Y, Zhang J, Cai N, Su M, Wang Y, Zhang M, Wang P (2010) Anion effects in organic dye-sensitized mesoscopic solar cells with ionic liquid electrolytes: tetracyanoborate vs dicyanamide. J Phys Chem C 115:816-22
    33. Xu X, Cao K, Huang D, Shen Y, Wang M (2012) Disulfide/thiolate based redox shuttle for dye-sensitized solar cells: an impedance spectroscopy study. J Phys Chem C 116:25233-5241
    34. Yu Q, Zhou D, Shi Y, Si X, Wang Y, Wang P (2010) Stable and efficient dye-sensitized solar cells: photophysical and electrical characterizations. Energe Environ Sci 3:1722-725
    35. Bai Y, Yu Q, Cai N, Wang Y, Zhang M, Wang P (2011) High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. Chem Commun 47:4376-378
    36. Zhang M, Liu J, Wang Y, Zhou D, Wang P (2011) Redox couple related influences of pi-conjugation extension in organic dye-sensitized mesoscopic solar cells. Chem Sci 2:1401-406
    37. Zhou D, Yu Q, Cai N, Bai Y, Wang Y, Wang P (2011) Efficient organic dye-sensitized thin-film solar cells based on the tris(1,10-phenanthroline)cobalt(II/III) redox shuttle. Energ Environ Sci 4:2030-034
    38. Bai Y, Zhang J, Zhou D, Wang Y, Zhang M, Wang P (2011) Engineering organic sensitizers for iodine-free dye-sensitized solar cells: red-shifted current response concomitant with attenuated charge recombination. J Am Chem Soc 133:11442-1445
    39. Liu Y, Jennings JR, Zakeeruddin SM, Gr?tzel M, Wang Q (2013) Heterogeneous electron transfer from dye-sensitized nanocrystalline TiO2 to [Co(bpy)3]3+: insights gained from impedance spectroscopy. J Am Chem Soc 135:3939-952
    40. Mora-Seró I, Giménez S, Fabregat-Santiago F, Gomez R, Shen Q, Toyoda T, Bisquert J (2009) Recombination in quantum dot sensitized solar cells. Acc Chem Res 42:1848-857
    41. Gónzalez-Pedro V, Xu X, Mora-Seró I, Bisquert J (2010) Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano 4:5783-790
    42. Boix PP, Guerrero A, Marchesi LF, Garcia-Belmonte G, Bisquert J (2011) Current–voltage characteristics of bulk heterojunction organic solar cells: connection between light and dark curves. Adv Energ Mater 1:1073-078
    43. Wang H, Peter LM (2009) A comparison of different methods to determine the electron diffusion length in dye-sensitized solar cells. J Phys Chem C 113:18125-8133
    44. Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325-33
    45. Jennings JR, Liu Y, Safari-Alamuti F, Wang Q (2012) Dependence of dye-sensitized solar cell impedance on photoelectrode thickness. J Phys Chem C 116:1556-562
    46. Jaegermann W (1996) The semiconductor/electrolyte interface: a surface science approach. Mod Asp Electrochem 30:1-85
    47. Bisquert J, Cahen D, Rühle S, Hodes G, Zaban A (2004) Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J Phys Chem B 108:8106-118
    48. Bisquert J (2007) Hopping transport of electrons in dye-sensitized solar cells. J Phys Chem C 111:17163-7168
    49. Bisquert J (2008) Interpretation of electron diffusion coefficient in organic and inorganic semiconductors with broad distributions of states. Phys Chem Chem Phys 10:3175-194
    50. Bisquert J, Zaban A, Greenshtein M, Mora-Seró I (2004) Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J Am Chem Soc 126:13550
    51. Bisquert J, Vikhrenko VS (2004) Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. J Phys Chem B 108:2313-322
    52. Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Giménez S (2009) Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. J Phys Chem C 113:17278-7290
    53. van de Lagemaat J, Frank AJ (2001) Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J Phys Chem B 105:11194-1205
    54. Benkstein KD, Kopidakis N, Van de Lagemaat J, Frank AJ (2003) Influence of the percolation network geometry on the electron transport in dye-sensitized titanium dioxide solar cells. J Phys Chem B 107:7759-767
    55. Anta JA (2009) Random walk numerical simulation for solar cell applications. Energ Environ Sci 2:387-92
    56. Ansari-Rad M, Abdi Y, Arzi E (2012) Simulation of non-linear recombination of charge carriers in sensitized nanocrystalline solar cells. J Appl Phys 112:074319
    57. Mendels D, Tessler N (2013) Drift and diffusion in disordered organic semiconductors: the role of charge density and charge energy transport. J Phys Chem C 117:3287-293
    58. Rego LGC, Batista VS (2003) Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J Am Chem Soc 125:7989-997
    59. Ronca E, Pastore M, Belpassi L, Tarantelli F, De Angelis F (2012) Influence of the dye molecular structure on the TiO2 conduction band in dye-sensitized solar cells: disentangling charge transfer and electrostatic effects. Energ Environ Sci 6:183-93
    60. Pastore M, de Angelis F (2013) Intermolecular interactions in dye-sensitized solar cells: a computational modeling perspective. J Phys Chem Lett 4:956-74
    61. Baumeier B, May F, Lennartz C, Andrienko D (2012) Challenges for in silico design of organic semiconductors. J Mater Chem 22:10971-0976
    62. Ruhle V, Lukyanov A, May F, Schrader M, Vehoff T, Kirkpatrick J, Baumeier B, Andrienko D (2011) Microscopic simulations of charge transport in disordered organic semiconductors. J Chem Theory Comput 7:3335-345
    63. Coehoorn R, Bobbert PA (2012) Effects of Gaussian disorder on charge carrier transport and recombination in organic semiconductors. Physica Status Solidi A 209:2354-377
    64. Cao F, Oskam G, Meyer GJ, Searson PC (1996) Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells. J Phys Chem 100:17021-7027
    65. Villanueva J, Anta JA, Guillen E, Oskam G (2009) Numerical simulation of the current–voltage curve in dye-sensitized solar cells. J Phys Chem C 113:19722-9731
    66. Cai JH, Chen H, Han LY (2012) Models of electron injection, diffusion and recombination in dye-sensitized solar cells. Int J Mod Phys B 26:19
    67. Cass MJ, Qiu FL, Walker AB, Fisher AC, Peter LM (2003) Influence of grain morphology on electron transport in dye sensitized nanocrystalline solar cells. J Phys Chem B 107:113-19
    68. Kambili A, Walker AB, Qiu FL, Fisher AC, Savin AD, Peter LM (2002) Electron transport in the dye sensitized nanocrystalline cell. Physica E 14:203-09
    69. Duffy NW, Peter LM, Rajapakse RMG, Wijayantha KGU (2000) Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sansitized nanocrystalline photovoltaic cells. J Phys Chem B 104:8916-919
    70. Duffy NW, Peter LM, Rajapakse RMG, Wijayantha KGU (2000) A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitized nanocrystalline solar cells. Electrochem Commun 2:658-62
    71. Jennings JR, Peter LM (2007) A reappraisal of the electron diffusion length in solid-state dye-sensitized solar cells. J Phys Chem C 111:16100-6104
    72. Lobato K, Peter LM, Wurfel U (2006) Direct measurement of the internal electron quasi-Fermi level in dye sensitized solar cells using a titanium secondary electrode. J Phys Chem B 110:16201-6204
    73. Paasch G, Micka K, Gersdorf P (1993) Theory of the electrochemical impedance of macrohomogeneous porous electrodes. Electrochim Acta 38:2653-662
    74. Stangl R, Ferber J, Luther J (1998) On the modeling of the dye-sensitized solar cell. Sol Energ Mat Sol Cells 54:255-64
    75. Ferber J, Stangl R, Luther J (1998) An electrical model of the dye-sensitized solar cell. Sol Energ Mat Sol Cells 53:29-4
    76. Burgelman M, Grasso C (2004) Network of flatband solar cells as a model for solid-state nanostructured solar cells. J Appl Phys 95:2020-024
    77. Newman JS (1973) Electrochemical systems. Prentice-Hall, Englewoods Cliffs
    78. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York
    79. Mora-Seró I, Garcia-Belmonte G, Boix PP, Vázquez MA, Bisquert J (2009) Impedance characterisation of highly efficient silicon solar cell under different light illumination intensities. Energe Environ Sci 2:678-86
    80. Rickert H (1982) Electrochemistry of solids. Springer, Berlin
    81. Riess I (1997) What does a voltmeter measure? Solid State Ion 95:327-28
    82. Schwarzburg K, Willig F (1999) Origin of photovoltage and photocurrent in the nanoporous dye-sensitized electrochemical solar cell. J Phys Chem B 28:5743-746
    83. Pichot F, Gregg BA (2000) The photovoltage-determining mechanism in dye-sensitized solar cells. J Phys Chem B 104:6-0
    84. Cahen D, Hodes G, Gr?tzel M, Guillemoles JF, Riess I (2000) Nature of photovoltaic action in dye-sensitized solar cells. J Phys Chem B 104:2053-059
    85. Levy B, Liu W, Gilbert SE (1997) Directed photocurrents in nanostructured TiO2/SnO2 heterojunction diodes. J Phys Chem B 101:1810-816
    86. Turrión M, Bisquert J, Salvador P (2003) Flatband potential of F:SnO2 in a TiO2 dye-sensitized solar cell: an interference reflection study. J Phys Chem B 107:9397-403
    87. Fabregat-Santiago F, Garcia-Belmonte G, Bisquert J, Bogdanoff P, Zaban A (2003) Mott-Schottky analysis of nanoporous semiconductor electrodes in the dielectric state deposited on SnO2(F) conducting substrates. J Electrochem Soc 150:E293–E298
    88. Rühle S, Dittrich T (2005) Investigation of the electric field in TiO2/FTO junctions used in dye-sensitized solar cells by photocurrent transients. J Phys Chem B 109:9522-526
    89. Ruhle S, Cahen D (2004) Electron tunneling at the TiO2/substrate interface can determine dye-sensitized solar cell performance. J Phys Chem B 108:17946-7951
    90. Liu WQ, Kou DX, Hu LH, Dai SY (2011) The kinetics of electron transfer across the multi-point contact interface through simplifying the complex structure in dye-sensitized solar cell. Chem Phys Lett 513:145-48
    91. van de Lagemaat J, Park N-G, Frank AJ (2000) Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques. J Phys Chem B 104:2044-052
    92. Bisquert J (2011) Dilemmas of dye-sensitized solar cells. ChemPhysChem 12:1633-636
    93. Zhang Z, Zakeeruddin SM, O'Regan BC, Humphry-Baker R, Gr?tzel M (2005) Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells. J Phys Chem B 109:21818-1824
    94. Guerrero A, Marchesi LF, Boix PP, Ruiz-Raga S, Ripolles-Sanchis T, Garcia-Belmonte G, Bisquert J (2012) How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells. ACS Nano 6:3453-460
    95. Mora-Seró I, Fabregat-Santiago F, Denier B, Bisquert J, Tena-Zaera R, Elias J, Lévy-Clement C (2006) Determination of carrier density of ZnO nanowires by electrochemical techniques. Appl Phys Lett 89:203117
    96. Tena-Zaera R, Elias J, Lévy-Clément C, Bekeny C, Voss T, Mora-Seró I, Bisquert J (2008) Influence of the potassium chloride concentration on the physical properties of electrodeposited ZnO nanowire arrays. J Phys Chem C 112:16318-6323
    97. Foley JM, Price MJ, Feldblyum JI, Maldonado S (2012) Analysis of the operation of thin nanowire photoelectrodes for solar energy conversion. Energe Environ Sci 5:5203-220
    98. Kambe S, Nakade S, Kitamura T, Wada Y, Yanagida S (2002) Influence of the electrolytes on electron transport in mesoporous TiO2-electrolyte systems. J Phys Chem B 106:2967-972
    99. Feldt SM, Gibson EA, Gabrielsson E, Sun L, Boschloo G, Hagfeldt A (2010) Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. J Am Chem Soc 132:16714-6724
    100. Bignozzi CA, Argazzi R, Boaretto R, Busatto E, Carli S, Ronconi F, Caramori S (2013) The role of transition metal complexes in dye sensitized solar devices. Coord Chem Rev 257(9-0):1472-492
    101. Snaith HJ, Gr?tzel M (2007) Light-enhanced charge mobility in a molecular hole transporter. Phys Rev Lett 98:177402
    102. Fabregat-Santiago F, Bisquert J, Cevey L, Chen P, Wang M, Zakeeruddin SM, Gr?tzel M (2009) Electron transport and recombination in solid state dye solar cell with spiro-OMeTAD as hole conductor. J Am Chem Soc 131:558-62
    103. Wang M, Chen P, Humphry-Baker R, Zakeeruddin SM, Gr?tzel M (2009) The influence of charge transport and recombination on the performance of dye-sensitized solar cells. ChemPhysChem 10:290-99
    104. Boix PP, Larramona G, Jacob A, Delatouche B, Mora-Sero I, Bisquert J (2011) Hole transport and recombination in all-solid Sb2S3-sensitized TiO2 solar cells using CuSCN as hole transporter. J Phys Chem C 116:1579-587
    105. Boix PP, Lee YH, Fabregat-Santiago F, Im SH, Mora-Sero I, Bisquert J, Seok SI (2012) From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells. ACS Nano 6:873-80
    106. Dualeh A, Moehl T, Nazeeruddin MK, Gr?tzel M (2013) Temperature dependence of transport properties of Spiro-MeOTAD as a hole transport material in solid-state dye-sensitized solar cells. ACS Nano 7:2292-301
    107. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett 13:1764-769
    108. Kopidakis N, Schiff EA, Park NG, van de Lagemaat J, Frank AJ (2000) Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2. J Phys Chem B 104:3930-936
    109. Champlain JG (2011) On the use of the term “ambipolar- Appl Phys Lett 99:123502
    110. Ritter D, Zeldov E, Weiser K (1988) Ambipolar transport in amorphous semiconductors in the lifetime and relaxation-time regimes investigated by the steady-state photocarrier grating technique. Phys Rev B 38:8296
    111. Papageorgiou N, Gr?tzel M, Infelta PP (1996) On the relevance of mass transport in thin layer nanocrystalline photoelectrochemical solar cells. Sol Energ Mat Sol Cells 44:405-38
    112. Kalaignan GP, Kang YS (2006) A review on mass transport in dye-sensitized nanocrystalline solar cells. J Photochem Photobiol C-Photochem Rev 7:17-2
    113. Usami A, Ozaki H (2001) Computer simulations of charge transport in dye-sensitized nanocrystalline photovoltaic cells. J Phys Chem B 105:4577-583
    114. Usami A (1998) Theoretical study of charge trasportation in dye-sensitized nanocrystalline TiO2 electrodes. Chem Phys Lett 292:223-28
    115. Hyk W, Augustynski J (2006) Steady-state operation of porous photoelectrochemical cells under the conditions of mixed diffusional and migrational mass transport. J Electrochem Soc 153:A2326
    116. Barnes PRF, Anderson AY, Durrant JR, O'Regan BC (2011) Simulation and measurement of complete dye sensitised solar cells: including the influence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient device behaviour. Phys Chem Chem Phys 13:5798-816
    117. Andrade L, Sousa J, Aguilar Ribeiro H, Mendes A (2012) Phenomenological modeling of dye-sensitized solar cells under transient conditions. Sol Energ 85:781-93
    118. Gagliardi A, der Maur MA, Gentilini D, Di Carlo A (2011) Simulation of dye solar cells: through and beyond one dimension. J Comput Electron 10:424-36
    119. Chua J, Mathews N, Jennings JR, Yang G, Wang Q, Mhaisalkar SG (2011) Patterned 3-dimensional metal grid electrodes as alternative electron collectors in dye-sensitized solar cells. Phys Chem Chem Phys 13:19314-9317
    120. Miettunen K, Halme J, Visuri A-M, Lund P (2011) Two-dimensional time-dependent numerical modeling of edge effects in dye solar cells. J Phys Chem C 115:7019-031
    121. Mastroianni S, Lanuti A, Penna S, Reale A, Brown TM, Di Carlo A, Decker F (2012) Physical and electrochemical analysis of an indoor–outdoor ageing test of large-area dye solar cell devices. ChemPhysChem 13:2925-936
    122. Anta JA, Idigoras J, Guillen E, Villanueva-Cab J, Mandujano-Ramirez HJ, Oskam G, Pelleja L, Palomares E (2012) A continuity equation for the simulation of the current–voltage curve and the time-dependent properties of dye-sensitized solar cells. Phys Chem Chem Phys 14:10285-0299
    123. Gagliardi A, Mastroianni S, Gentilini D, Giordano F, Reale A, Brown TM, Di Carlo A (2010) Multiscale modeling of dye solar cells and comparison with experimental data. IEEE J Select Top Quant Electron 16:1611-618
    124. Halme J, Vahermaa P, Miettunen K, Lund P (2010) Device physics of dye solar cells. Adv Mater 22:E210–E234
    125. Peter LM (2007) Characterization and modeling of dye-sensitized solar cells. J Phys Chem C 111:6601-612
    126. Barnes PRF, Miettunen K, Li X, Anderson AY, Bessho T, Gratzel M, O'Regan BC (2013) Interpretation of optoelectronic transient and charge extraction measurements in dye-sensitized solar cells. Adv Mater 25:1881-922
    127. Li L-L, Chang Y-C, Wu H-P, Diau EW-G (2012) Characterisation of electron transport and charge recombination using temporally resolved and frequency-domain techniques for dye-sensitised solar cells. Int Rev Phys Chem 31:420-67
    128. Schwarzburg K, Willig F (1991) Influence of trap filling on photocurrent transients in polycrystalline TiO2. Appl Phys Lett 58:2520-522
    129. Franco G, Gehring J, Peter LM, Ponomarev EA, Uhlendorf I (1999) Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells. J Phys Chem B 103:692-98
    130. van de Lagemaat J, Frank AJ (2000) Effect of the surface state distribution on electron transport in dye sensitized TiO2 solar cells: nonlinear electron-transport kinetics. J Phys Chem B 104:4292-294
    131. Vanmaekelbergh D, de Jongh PE (1999) Driving force for electron transport in porous nanostructured photoelectrodes. J Phys Chem B 103:747-50
    132. Vanmaekelbergh D, de Jongh PE (2000) Electron transport in disordered semiconductors studied by a small harmonic modulation of the steady state. Phys Rev B 61:4699-707
    133. Nelson J (1999) Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys Rev B 59:15374
    134. Bisquert J (2003) Chemical capacitance of nanostructured semiconductors: its origin and significance for heterogeneous solar cells. Phys Chem Chem Phys 5:5360-364
    135. Jamnik J, Maier J (2001) Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys Chem Chem Phys 3:1668-678
    136. Shockley W (1958) Electrons, holes, and traps. Proc IRE 46:973-90
    137. Garcia-Belmonte G, Guerrero A, Bisquert J (2013) Elucidating operating modes of bulk-heterojunction solar cells from impedance spectroscopy analysis. J Phys Chem Lett 4:877-86
    138. Lee PA (1982) Density of states and screening near the mobility edge. Phys Rev B 26:5882-885
    139. Berger T, Monllor-Satoca D, Jankulovska M, Lana-Villarreal T, Gomez R (2012) The electrochemistry of nanostructured titanium dioxide electrodes. ChemPhysChem 13(12):2824-875
    140. Zaban A, Greenshtein M, Bisquert J (2003) Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 4:859-64
    141. van Roosbroeck W (1953) The transport of added current carriers in a homogeneous semiconductor. Phys Rev 91:282-89
    142. Rose A (1963) Concepts in photoconductivity and allied problems. Interscience, New York
    143. van Roosbroeck W, Shockley W (1954) Photon-radiative recombination of electrons and holes in germanium. Phys Rev 94:1558-560
    144. Schmidt J (1999) Measurement of differential and actual recombination parameters in crystalline silicon wafers. IEEE Trans Electron Devices 46:2018-025
    145. Tiedje T, Rose A (1981) A physical interpretation of dispersive transport in disordered semiconductors. Solid State Commun 37:49
    146. Orenstein J, Kastner M (1981) Photocurrent transient spectroscopy: mesurament of the density of localized states in a–As2Se3. Phys Rev Lett 46:1421-424
    147. Hoesterey DC, Letson GM (1963) The trapping of photocarriers in anthracene. J Phys Chem Solids 24:1609
    148. Ondersma JW, Hamann TW (2011) Measurements and modeling of recombination from nanoparticle TiO2 electrodes. J Am Chem Soc 133:8264-271
    149. Ansari-Rad M, Abdi Y, Arzi E (2012) Reaction order and ideality factor in dye-sensitized nanocrystalline solar cells: a theoretical investigation. J Phys Chem C 116:10867-0872
    150. Bisquert J (2008) Beyond the quasi-static approximation: impedance and capacitance of an exponential distribution of traps. Phys Rev B 77:235203
    151. Dunn HK, Peter LM, Bingham SJ, Maluta E, Walker AB (2012) In situ detection of free and trapped electrons in dye-sensitized solar cells by photo-induced microwave reflectance measurements. J Phys Chem C 116:22063-2072
    152. Chen J, Li B, Zheng J, Jia S, Zhao J, Jing H, Zhu Z (2011) Role of one-dimensional ribbonlike nanostructures in dye-sensitized TiO2-based solar cells. J Phys Chem C 115:7104-113
    153. Ondersma JW, Hamann TW (2009) Impedance investigation of dye-sensitized solar cells employing outer-sphere redox shuttles. J Phys Chem C 114:638-45
    154. Bisquert J (2004) Chemical diffusion coefficient in nanostructured semiconductor electrodes and dye-sensitized solar cells. J Phys Chem B 108:2323-332
    155. Marinado T, Nonomura K, Nissfolk J, Karlsson MK, Hagberg DP, Sun L, Mori S, Hagfeldt A (2009) How the nature of triphenylamine-polyene dyes in dye-sensitized solar cells affects the open-circuit voltage and electron lifetimes. Langmuir 26:2592-598
    156. Jennings JR, Li F, Wang Q (2010) Reliable determination of electron diffusion length and charge separation efficiency in dye-sensitized solar cells. J Phys Chem C 114:14665-4674
    157. González-Vázquez JP, Anta JA, Bisquert J (2009) Random walk numerical simulation for hopping transport at finite carrier concentrations: diffusion coefficient and transport energy concept. Phys Chem Chem Phys 11:10359-0367
    158. Gonzalez-Vazquez JP, Oskam G, Anta JA (2012) Origin of nonlinear recombination in dye-sensitized solar cells: interplay between charge transport and charge transfer. J Phys Chem C 116:22687-2697
    159. van de Lagemaat J, Kopidakis N, Neale NR, Frank AJ (2005) Effect of nonideal statistics on electron diffusion in sensitized nanocrystalline TiO2. Phys Rev B 71:035304
    160. Anta JA, Mora-Seró I, Dittrich T, Bisquert J (2008) Interpretation of diffusion coefficients in nanostructured materials from random walk numerical simulation. Phys Chem Chem Phys 10:4478-485
    161. Gonzalez-Vazquez JP, Anta JA, Bisquert J (2010) Determination of the electron diffusion length in dye-sensitized solar cells by random walk simulation: compensation effects and voltage dependence. J Phys Chem C 114:8552-558
    162. Darken LS (1948) Trans Am Inst Min Eng 175:184
    163. Paul EW, Ricco AJ, Wrighton MS (1985) Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline based microelectronic devices. J Phys Chem 89:1441
    164. Vanmaekelbergh D, Houtepen AJ, Kelly JJ (2007) Electrochemical gating: a method to tune and monitor the (opto)electronic properties of functional materials. Electrochim Acta 53:1140-149
    165. Pomerantz Z, Zaban A, Ghosh S, Lellouche J-P, Garcia-Belmonte G, Bisquert J (2008) Capacitance, spectroelectrochemistry and conductivity of polarons and bipolarons in a polydicarbazole based conducting polymer. J Electroanal Chem 614:49-0
    166. Ondersma JW, Hamann TW (2012) Conduction band energy determination by variable temperature spectroelectrochemistry. Energ Environ Sci 5:9476-480
    167. Boschloo G, Fitzmaurice D (1999) Electron accumulation in nanostructured TiO2 (anatase) electrodes. J Phys Chem B 103:7860-868
    168. Berger T, Anta JA, Morales-Florez V (2012) Electrons in the band gap: spectroscopic characterization of anatase TiO2 nanocrystal electrodes under Fermi level control. J Phys Chem C 116:11444-1455
    169. Kroeze JE, Savenije TJ, Warman JM (2003) Electrodeless determination of the trap density, decay kinetics and charge separation efficiency of dye-sensitized nanocrystalline TiO2. J Am Chem Soc 126:7608
    170. Friedrich D, Kunst M (2011) Analysis of charge carrier kinetics in nanoporous systems by time resolved photoconductance measurements. J Phys Chem C 115:16657-6663
    171. Fabregat-Santiago F, Garcia-Belmonte G, Bisquert J, Zaban A, Salvador P (2002) Decoupling of transport, charge-storage and interfacial charge-transfer in the nanocrystalline TiO2/electrolyte system by impedance methods. J Phys Chem B 106:334-39
    172. Archana PS, Jose R, Yusoff MM, Ramakrishna S (2011) Near band-edge electron diffusion in electrospun Nb-doped anatase TiO[sub 2] nanofibers probed by electrochemical impedance spectroscopy. Appl Phys Lett 98:152106
    173. Jennings JR, Wang Q (2010) Influence of lithium ion concentration on electron injection, transport, and recombination in dye-sensitized solar cells. J Phys Chem C 114:1715-724
    174. Bisquert J, Gr?tzel M, Wang Q, Fabregat-Santiago F (2006) Three-channel transmission line impedance model for mesoscopic oxide electrodes functionalized with a conductive coating. J Phys Chem B 110:11284-1290
    175. Bisquert J (2000) Influence of the boundaries in the impedance of porous film electrodes. Phys Chem Chem Phys 2:4185-192
    176. Barea EM, Bisquert J (2013) Properties of chromophores determining recombination at TiO2-dye-electrolyte interface. Langmuir 29:8773-781
    177. Clifford JN, Martinez-Ferrero E, Palomares E (2012) Dye mediated charge recombination dynamics in nanocrystalline TiO2 dye sensitized solar cells. J Mater Chem 22:12415-2422
    178. de Vries MJ, Pellin MJ, Hupp JT (2010) Dye-sensitized solar cells: driving-force effects on electron recombination dynamics with cobalt-based shuttles. Langmuir. doi:10.1021/la904643t
    179. Ondersma JW, Hamann TW (2013) Recombination and redox couples in dye-sensitized solar cells. Coord Chem Rev 257:1533-543
    180. Bisquert J, Zaban A, Salvador P (2002) Analysis of the mechanism of electron recombination in nanoporous TiO2 dye-sensitized solar cells. Nonequilibrium steady state statistics and transfer rate of electrons in surface states. J Phys Chem B 106:8774-782
    181. Salvador P, González-Hidalgo M, Zaban A, Bisquert J (2005) Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells. J Phys Chem B 109:15915-5926
    182. Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. I. J Chem Phys 24:966
    183. Marcus RA (1960) Exchange reactions and electron transfer reactions inclunding isotopic exchange. Theory of oxidation–reduction reactions involving electron transfer. Part 4. Faraday Discuss Chem Soc 29:21
    184. Marcus RA (1965) On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J Chem Phys 43:679
    185. Marcus RA (1959) On the theory of electrochemical and chemical electron transfer processes. Can J Chem 37:155-63
    186. Gosavi S, Marcus RA (2000) Nonadiabatic electron transfer at metal surfaces. J Phys Chem B 104:2067-072
    187. Gosavi S, Qin Gao Y, Marcus RA (2001) Temperature dependence of the electronic factor in the nonadiabatic electron transfer at metal and semiconductor electrodes. J Electroanal Chem 500:71-7
    188. Marcus RA (1968) Electron transfer at electrodes and in solution: comparison of theory and experiment. Electrochim Acta 13:995-004
    189. Marcus RA (1990) Reorganization free energy for electron transfers at liquid–liquid and dielectric semiconductor–liquid interfaces. J Phys Chem 94:1050-055
    190. Gao YQ, Georgievskii Y, Marcus RA (2000) On the theory of electron transfer reactions at semiconductor electrode/liquid interfaces. J Chem Phys 112:3358-369
    191. Marcus RA (1990) Theory of electron-transfer rates across liquid–liquid interfaces. J Phys Chem 94:4152-155
    192. Marcus RA (1963) On the theory of oxidation–reduction reactions involving electron transfer. V. Comparison and properties of electrochemical and chemical rate constants. J Phys Chem 67:853
    193. Marcus RA (1964) Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem 15:155-96
    194. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265-22
    195. Landau LD (1932) Assotsiatsiya dvukhatomnykh molekul. Sovetskii Fizicheskii Zhurnal 2:46-2
    196. Zener C (1933) Dissociation of excited diatomic molecules by external perturbations. Proc R Soc Lond A 140:660-68
    197. Feldberg SW, Sutin N (2006) Distance dependence of heterogeneous electron transfer through the nonadiabatic and adiabatic regimes. Chem Phys 324:216-25
    198. Chidsey CED (1991) Free energy and temperature dependence of electron transfer at the metal-electrolyte interface. Science 251:918-22
    199. Hamann TW, Gstrein F, Brunschwig BS, Lewis NS (2005) Measurement of the dependence of interfacial charge-transfer rate constants on the reorganization energy of redox species at n-ZnO/H2O interfaces. J Am Chem Soc 127:13949-3954
    200. Royea WJ, Fajardo AM, Lewis NS (1997) Fermi golden rule approach to evaluating outer-sphere electron-transfer rate constants at semiconductor/liquid interfaces. J Phys Chem B 101:11152-1159
    201. Kuciauskas D, Freund MS, Gray HB, Winkler JR, Lewis N (2001) Electron transfer dynamics in nanocrystaline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes. J Phys Chem B 105:392-03
    202. Lyon LA, Hupp JT (1999) Energetics of the nanocrystalline titanium dioxide/aqueous solution interface: approximate conduction band edge variations. J Phys Chem B 103:4623-628
    203. Miyashita M, Sunahara K, Nishikawa T, Uemura Y, Koumura N, Hara K, Mori A, Abe T, Suzuki E, Mori S (2008) Interfacial electron-transfer kinetics in metal-free organic dye-sensitized solar cells: combined effects of molecular structure of dyes and electrolytes. J Am Chem Soc 130:17874-7881
    204. Gaal DA, Hupp JT (2000) Thermally activated, inverted interfacial electron transfer kinetics: high driving force reactions between tin oxide nanoparticles and electrostatically-bound molecular reactants. J Am Chem Soc 122:10956-0963
    205. Maggio E, Martsinovich N, Troisi A (2012) Theoretical study of charge recombination at the TiO2-electrolyte interface in dye sensitised solar cells. J Chem Phys 137:22A508
    206. Sun Z, Zhang R-K, Xie H-H, Wang H, Liang M, Xue S (2013) Non-ideal charge recombination and conduction band edge shifts in dye-sensitized solar cells based on adsorbent doped poly(ethylene oxide) electrolytes. J Phys Chem C 117:4364-373
    207. Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42:1819-826
    208. Ardo S, Meyer GJ (2009) Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem Soc Rev 38:115-64
    209. Richards CE, Anderson AY, Martiniani S, Law C, O'Regan BC (2012) The mechanism of iodine reduction by TiO2 electrons and the kinetics of recombination in dye-sensitized solar cells. J Phys Chem Lett 3:1980-984
    210. Rowley JG, Farnum BH, Ardo S, Meyer GJ (2011) Iodide chemistry in dye-sensitized solar cells: making and breaking I–I bonds for solar energy conversion. J Phys Chem Lett 1:3132-140
    211. Rowley JG, Ardo S, Sun Y, Castellano FN, Meyer GJ (2011) Charge recombination to oxidized iodide in dye-sensitized solar cells. J Phys Chem C 115:20316-0325
    212. O’Regan BC, Walley K, Juozapavicius M, Anderson A, Matar F, Ghaddar T, Zakeeruddin SM, Klein C, Durrant JR (2009) Structure/function relationships in dyes for solar energy conversion: a two-atom change in dye structure and the mechanism for its effect on cell voltage. J Am Chem Soc 131:3541-548
    213. Farnum BH, Gardner JM, Meyer GJ (2010) Flash-quench technique employed to study the one-electron reduction of triiodide in acetonitrile: evidence for a diiodide reaction product. Inorg Chem 49:10223-0225
    214. Shi Y, Dong X (2013) Coupled analysis of steady-state and dynamic characteristics of dye-sensitized solar cells for determination of conduction band movement and recombination parameters. Phys Chem Chem Phys 15:299-06
    215. Mora-Seró I, Bisquert J (2003) Fermi level of surface states in TiO2 nanoparticles. Nano Lett 3:945-49
    216. Cameron PJ, Peter LM (2005) How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells? J Phys Chem B 109:7392
  • 作者单位:Juan Bisquert (17)
    Rudolph A. Marcus (18)

    17. Photovoltaics and Optoelectronic Devices Group, Departament de Física, Universitat Jaume I, 12071, Castelló, Spain
    18. Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, 91125, USA
  • ISSN:1436-5049
文摘
We review the concepts and methods of modeling of the dye-sensitized solar cell, starting from fundamental electron transfer theory, and using phenomenological transport-conservation equations. The models revised here are aimed at describing the components of the current–voltage curve of the solar cell, based on small perturbation experimental methods, and to such an end, a range of phenomena occurring in the nanoparticulate electron transport materials, and at interfaces, are covered. Disorder plays a major role in the definition of kinetic parameters, and we introduce single particle as well as collective function definitions of diffusion coefficient and electron lifetime. Based on these fundamental considerations, applied tools of analysis of impedance spectroscopy are described, and we outline in detail the theory of recombination via surface states that is successful to describe the measured recombination resistance and lifetime.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700