Modelling the electric potential distribution in the dark in nanoporous semiconductor electrodes
详细信息    查看全文
文摘
This study concerns the electric potential distribution in the dark in nanocrystalline porous semiconductor electrodes, in full depletion conditions. Since band bending in a single colloidal particle is small, the idea is to develop a model that accounts for the total potential drop resulting from the equilibration between the Fermi level and the redox potential in the solution. As preliminary steps, the band bending and potential distribution in a planar electrode and also in a colloidal semiconductor particle are reviewed. In order to overcome the limitations of results based on these geometries, a model based on a columnar shape is developed. The Poisson equation is solved in the columnar electrode, with careful consideration of the boundary conditions. A large potential drop is shown to take place at the back contact. To complete the study, the effect of the depletion zone in the transparent conducting oxide is analysed. Simple expressions are derived that permit evaluation of how the total potential drop is distributed between the electrode and the substrate. From this, the strength and spatial range of the electric field in the electrode can be estimated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700