Effect of lithium bis(trifluoromethylsulfonyl)imide salt-doped UV-cured glycidyl methacrylate
详细信息    查看全文
  • 作者:Nurul Nabilah Mohd Radzir ; Sharina Abu Hanifah…
  • 关键词:Solid polymer electrolytes ; Ionic conductivity ; Poly(glycidyl methacrylate) ; Lithium bis(trifluoromethylsulfonyl)imide
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:19
  • 期:10
  • 页码:3079-3085
  • 全文大小:880 KB
  • 参考文献:1.Bella F, Mobarak NN, Jumaah FN, Ahmad A (2015) From seaweeds to biopolymeric electrolytes for third generation solar cells: an intriguing approach. Electrochim Acta 151:306-11CrossRef
    2.Kurc B, Jesionowski T (2015) Modified TiO2-SiO2 ceramic filler for a composite gel polymer electrolytes working with LiMn2O4. J Solid State Electrochem 19(5):1427-435CrossRef
    3.Jayathilake YMCD, Perera KS, Vidanapathirana KP (2015) Preparation and characterization of a polyacrylonitrile-based gel polymer electrolyte complexed with 1 methyl-3 propyl immidazolium iodide. J Solid State Electrochem. doi:10.-007/?s10008-015-2834-7
    4.Singh PK, Jadhav NA, Mishra SK, Singh UP, Bhattacharya B (2010) Application of ionic liquid doped solid polymer electrolyte. Ionics 16:645-48CrossRef
    5.Lewandowski A, Swiderska A (2004) New composite solid electrolytes based on a polymer and ionic liquids. Solid State Ion 169:21-4CrossRef
    6.Singh PK, Bhattacharya B, Mehra RM, Rhee HW (2011) Plasticizer doped ionic liquid incorporated solid polymer electrolytes for photovoltaic application. Curr Appl Phys 11:616-19CrossRef
    7.Gerbaldi C (2010) All-solid-state lithium-based polymer cells for high-temperature applications. Ionics 16(9):777-86CrossRef
    8.Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42(1):21-2CrossRef
    9.Hodko D, Gamboa-Aldeco M, Murphy OJ (2009) Influence of photopolymerization conditions on the structure and property of poly (divinylbenzene) shells. J Mater Sci 13(7):1077-089
    10.Imperiyka M, Ahmad A, Hanifah SA, Rahman MYA (2013) Potential of UV-curable poly(glycidyl methacrylate-co-ethyl methacrylate) based solid polymer electrolyte for lithium ion battery application. Int J Electrochem Sci 8:10932-0945
    11.Ahmad A, Rahman MYA, Su’ait MS, Hamzah H (2011) Studies of MG49-PMMA-LiBF4 based solid polymer electrolytes. Open Mater Sci J 5:170-77CrossRef
    12.Abbrent S, Lindgren J, Tegenfeldt J, Wendsj? ? (1998) Gel electrolytes prepared from oligo(ethylene glycol)dimethacrylate: glass transition, conductivity and Li+-coordination. Electrochim Acta 43:1185-191CrossRef
    13.Hanifah SA, Hamzah N, Heng LY (2013) Rapid synthesis of magnetic microspheres poly(glycidyl methacrylate-co-styrene) by photopolymerization. Sains Malay 42(4):487-93
    14.Su’ait MS, Ahmad A, Hamzah H, Noor SAM, Rahman MYA (2012) Preparation and characterization of blended solid polymer electrolyte MG49:PMMA–lithium tetrafluoroborate. J Solid State Electrochem 16(6):2275-282CrossRef
    15.Sun B, Mindemark J, Edstr?m K, Brandell D (2014) Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ion 262:738-42CrossRef
    16.Kotobuki M, Koishi M (2013) Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol–gel route using various Al sources. Ceram Int 39(4):4645-649CrossRef
    17.Imperiyka M, Ahmad A, Hanifah SA, Mohamed NS, Rahman MYA (2013) Investigation of plasticized UV-curable glycidyl methacrylate based solid polymer electrolyte for photochemical cell (PEC) application. Int J Hydro Energ 39:3018-024CrossRef
    18.Bella F, Imperiyka M, Ahmad A (2014) Photochemically produced quasi-linear copolymers for stable and efficient electrolytes in dye-sensitized solar cells. J Photochem Photobiol A 289:73-0CrossRef
    19.Imperiyka M, Ahmad A, Hanifah SA, Bella F (2014) A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells. Physica B 450:151-54CrossRef
    20.Rodrigues LC, Barbosa PC, Silva MM, Smith MJ (2007) Electrochemical and thermal properties of polymer electrolytes based on poly(epichlorohydrin-co-ethylene oxide-co-ally glycidyl ether. Electrochim Acta 53:1427-431CrossRef
    21.Singh TJ, Bhat SV (2003) Morphology and conductivity studies of a new solid polymer electrolyte: (PEG)xLiClO4. Bull Mater Sci 26:707-14CrossRef
    22.Mohd Noor SA, Gunzelmann D, Sun J, MacFarlane DR, Forsyth M (2014) Ion conduction and phase morphology in sulfonate copolymer ionomers based on ionic liquid-sodium cation mixtures. J Mater Chem A 2(2):365-74CrossRef
    23.Uma T, Mahalingam T, Stimming U (2005) Solid polymer electrolytes based on poly(vinylchloride)-lithium sulfate. Mater Chem Phys 90:239-44CrossRef
    24.Capiglia C, Imanishi N, Takeda Y, Henderson WA, Passerini S (2003) Poly(ethylene oxide) LiN(SO2CF2CF3)2 polymer electrolytes IV. Raman characterization. J Electrochem Soc 150(4):A525–A531CrossRef
    25.Borodin O, Smith GD, Henderson W (2006) Li+ Cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI?/sup> ionic liquids. J Phys Chem B 110:16879-6886CrossRef
    26.Ramesh S, Liew CW, Ramesh K (2011) Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes. J Non Cryst Solids 357:2132-138CrossRef
    27.Ramesh S, Teh GB, Louh RF, Hou YK, Sin PY, Yi LJ (2011) Preparation and characterization of plasticized high
  • 作者单位:Nurul Nabilah Mohd Radzir (1)
    Sharina Abu Hanifah (1)
    Azizan Ahmad (1)
    Nur Hasyareeda Hassan (1)
    Federico Bella (2)

    1. School of Chemical Sciences and Food Technology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
    2. GAME Lab, CHENERGY Group, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
A study is carried out on solid polymer electrolytes (SPEs) based on UV-curable glycidyl methacrylate (GMA) reactive mixtures to determine the lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) effect at different weight percentages. These polymeric systems are discussed considering several factors such as chemical interaction, structural and thermal properties, ionic conductivity, and lithium transference number. Samples are prepared using solution casting technique and are analyzed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and electrochemical impedance spectroscopy (EIS) characterization methodologies. FTIR spectra show that interaction occurs between electronegative atoms in polymer host and TFSI?/sup> ions. XRD diffractogram indicates the amorphous aspect of SPEs, without the presence of LiTFSI peaks. Doping with LiTFSI salt reduces the glass transition temperature of SPEs and increased their ionic conductivity. Identified as the ideal salt concentration for poly(glycidyl methacrylate) (PGMA)-LiTFSI SPE system is 30 wt.% LiTFSI doping level, thus achieving a ionic conductivity of 3.69?×-0? S cm? at ambient temperature and 1.23?×-0? S cm? at 373 K. The ionic conductivity behavior obeys the Vogel–Tamman–Fulcher equation with an activation energy of 0.054 eV. Keywords Solid polymer electrolytes Ionic conductivity Poly(glycidyl methacrylate) Lithium bis(trifluoromethylsulfonyl)imide

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700