The effect of mechanical loading on osteogenesis of human dental pulp stromal cells in a novel in vitro model
详细信息    查看全文
  • 作者:Jun Ji ; Weibin Sun ; Wenmei Wang ; Theresa Munyombwe…
  • 关键词:Biomimetic bioreactor ; Mechanical stimulation ; Biting force ; hDPSCs ; Bone tissue engineering ; Osteogenesis ; In vitro model
  • 刊名:Cell and Tissue Research
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:358
  • 期:1
  • 页码:123-133
  • 全文大小:1,734 KB
  • 参考文献:1. Alge DL, Zhou D, Adams LL, Wyss BK, Shadday MD, Woods EJ, Gabriel Chu TM, Goebel WS (2010) Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J Tissue Eng Regen Med 4:73-1
    2. Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL (2002) Cell differentiation by mechanical stress. FASEB J 16:270-72
    3. Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG (2002) Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci U S A 99:12600-2605 CrossRef
    4. Barros I, Muramoto T, Soma K (2007) Effects of occlusal loading on alveolar bone remodeling and changes in the distribution of neuropeptides after tooth replantation in rats. J Med Dent Sci 54:49-6
    5. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215-24 CrossRef
    6. Brown TD, Pedersen DR, Gray ML, Brand RA, Rubin CT (1990) Toward an identification of mechanical parameters initiating periosteal remodeling: a combined experimental and analytic approach. J Biomech 23:893-05 CrossRef
    7. Bruder SP, Fox BS (1999) Tissue engineering of bone. Cell based strategies. Clin Orthop Relat Res 367 Suppl: S68–S83 CrossRef
    8. Burger EH, Klein-Nulend J, Veldhuijzen JP (1992) Mechanical stress and osteogenesis in vitro. J Bone Miner Res 7 (Suppl 2):S397–S401 CrossRef
    9. Buschang PH, Hayasaki H, Throckmorton GS (2000) Quantification of human chewing-cycle kinematics. Arch Oral Biol 45:461-74 CrossRef
    10. Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 108:1497-508
    11. Buschmann MD, Gluzband YA, Grodzinsky AJ, Kimura JH, Hunziker EB (1992) Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J Orthop Res 10:745-58 CrossRef
    12. Canter HI, Vargel I, Mavili ME (2007) Reconstruction of mandibular defects using autografts combined with demineralized bone matrix and cancellous allograft. J Craniofac Surg 18:95-03 CrossRef
    13. Felix Lanao RP, Hoekstra JW, Wolke JG, Leeuwenburgh SC, Plachokova AS, Boerman OC, van den Beucken JJ, Jansen JA (2012) Porous calcium phosphate cement for alveolar bone regeneration. J Tissue Eng Regen Med. 10.1002/term.1546
    14. Green DW, Howard D, Yang X, Partridge K, Oreffo ROC (2002) Human osteoprogenitor attachment, growth and differentiation on marine invertebrate skeletons. Eur Cells Mater 4 (Suppl 2):133-34
    15. Green D, Walsh D, Yang XB, Mann S, Oreffo ROC (2004) Stimulation of human bone marrow stromal cells using growth factor encapsulated calcium carbonate porous microspheres. J Mater Chem 14:2206-212 CrossRef
    16. Grellier M, Bareille R, Bourget C, Amedee J (2009) Responsiveness of human bone marrow stromal cells to shear stress. J Tissue Eng Regen Med 3:302-09 CrossRef
    17. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625-3630 CrossRef
    18. Gu YD, Cheng DS, Zhang GM, Chen XM, Xu JG, Yang XB (1997) Long-term results of toe transfer: retrospective analysis. J Reconstr Microsurg 13:405-08 CrossRef
    19. Horner E, Kirkham J, Wood D, Curran S, Smith M, Thomson B, Yang X (2010) Long bone defect models for tissue engineering applications: criteria for choice. Tissue Eng Part B 16:263-71 CrossRef
    20. Horner E, Kirkham J, Yang X (2008) Animal models. In: Polak JM, Harding SE (eds) Advances in tissue engineering. Imperial College Press, London, pp 763-80 CrossRef
    21. Hsieh YF, Turner CH (2001) Effects of loading frequency on mechanically induced bone formation. J Bone Miner Res 16:918-24 CrossRef
    22. Huang CY, Reuben PM, Cheung HS (2005) Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow-derived mesenchymal stem cells under cyclic compressive loading. Stem Cells 23:1113-121 CrossRef
    23. Huselstein C, Netter P, de Isla N, Wang Y, Gillet P, Decot V, Muller S, Bensoussan D, Stoltz JF (2008) Mechanobiology, chondrocyte and cartilage. Biomed Mater Eng 18:213-20
    24. Jacobs CR, Yellowley CE, Davis BR, Zhou Z, Cimbala JM, Donahue HJ (1998) Differential effect of steady versus oscillating flow on bone cells. J Biomech 31:969-76 CrossRef
    25. Jones E, Yang X (2011) Mesenchymal stem cells and bone regeneration: current status. Injury 42:562-68 CrossRef
    26. Kim YJ, Sah RL, Grodzinsky AJ, Plaas AH, Sandy JD (1994) Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. Arch Biochem Biophys 311:1-2 CrossRef
    27. Kimelman-Bleich N, Seliktar D, Kallai I, Helm GA, Gazit Z, Gazit D, Pelled G (2011) The effect of ex vivo dynamic loading on the osteogenic differentiation of genetically engineered mesenchymal stem cell model. J Tissue Eng Regen Med 5:384-93 CrossRef
    28. Kingsmill VJ (1999) Post-extraction remodeling of the adult mandible. Crit Rev Oral Biol Med 10:384-04 CrossRef
    29. Knight MM, Lee DA, Bader DL (1998) The influence of elaborated pericellular matrix on the deformation of isolated articular chondrocytes cultured in agarose. Biochim Biophys Acta 1405:67-7 CrossRef
    30. Kolettas E, Buluwela L, Bayliss MT, Muir HI (1995) Expression of cartilage-specific molecules is retained on long-term culture of human articular chondrocytes. J Cell Sci 108:1991-999
    31. Kraft DC, Bindslev DA, Melsen B, Abdallah BM, Kassem M, Klein-Nulend J (2010) Mechanosensitivity of dental pulp stem cells is related to their osteogenic maturity. Eur J Oral Sci 118:29-8 CrossRef
    32. Kraft DC, Bindslev DA, Melsen B, Klein-Nulend J (2011) Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress. Cytotherapy 13:214-26 CrossRef
    33. Kurane A, Vyavahare N (2009) In vivo vascular tissue engineering: influence of cytokine and implant location on tissue specific cellular recruitment. J Tissue Eng Regen Med 3:280-89 CrossRef
    34. Lacroix D, Chateau A, Ginebra MP, Planell JA (2006) Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27:5326-334 CrossRef
    35. Laino G, Aquino RD, Graziano A, Lanza V, Carinci F, Naro F, Pirozzi G, Papaccio G (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 20:394-402 CrossRef
    36. Linden JC van der, Homminga J, Verhaar JA, Weinans H (2001) Mechanical consequences of bone loss in cancellous bone. J Bone Miner Res 16:457-65
    37. Liu L, Zong C, Li B, Shen D, Tang Z, Chen J, Zheng Q, Tong X, Gao C, Wang J (2012) The interaction between beta1 integrins and ERK1/2 in osteogenic differentiation of human mesenchymal stem cells under fluid shear stress modelled by a perfusion system. J Tissue Eng Regen Med 8:85-96 CrossRef
    38. Maaloum M, Pernodet N, Tinland B (1998) Agarose gel structure using atomic force microscopy: gel concentration and ionic strength effects. Electrophoresis 19:1606-610 CrossRef
    39. Mauney JR, Sjostorm S, Blumberg J, Horan R, O'Leary JP, Vunjak-Novakovic G, Volloch V, Kaplan DL (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 74:458-68 CrossRef
    40. Mavropoulos A, Rizzoli R, Ammann P (2007) Different responsiveness of alveolar and tibial bone to bone loss stimuli. J Bone Miner Res 22:403-10 CrossRef
    41. Min KS, Park HJ, Lee SK, Park SH, Hong CU, Kim HW, Lee HH, Kim EC (2008) Effect of mineral trioxide aggregate on dentin bridge formation and expression of dentin sialoprotein and heme oxygenase-1 in human dental pulp. J Endod 34:666-70 CrossRef
    42. Mouw JK, Case ND, Guldberg RE, Plaas AH, Levenston ME (2005) Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthritis Cartilage 13:828-36 CrossRef
    43. Nakashima M, Iohara K, Sugiyama M (2009) Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration. Cytokine Growth Factor Rev 20:435-40 CrossRef
    44. O'Brien FJ, Harley BA, Waller MA, Yannas IV, Gibson LJ, Prendergast PJ (2007) The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol Health Care 15:3-7
    45. Pelaez D, Huang CY, Cheung HS (2009) Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev 18:93-02 CrossRef
    46. Reilly GC, Engler AJ (2010) Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech 43:55-2 CrossRef
    47. Sittichockechaiwut A, Scutt AM, Ryan AJ, Bonewald LF, Reilly GC (2009) Use of rapidly mineralising osteoblasts and short periods of mechanical loading to accelerate matrix maturation in 3D scaffolds. Bone 44:822-29 CrossRef
    48. Sittichokechaiwut A, Edwards JH, Scutt AM, Reilly GC (2010) Short bouts of mechanical loading are as effective as dexamethasone at inducing matrix production by human bone marrow mesenchymal stem cell. Eur Cell Mater 20:45-7
    49. Terai K, Takano-Yamamoto T, Ohba Y, Hiura K, Sugimoto M, Sato M, Kawahata H, Inaguma N, Kitamura Y, Nomura S (1999) Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res 14:839-49 CrossRef
    50. Terraciano V, Hwang N, Moroni L, Park HB, Zhang Z, Mizrahi J, Seliktar D, Elisseeff J (2007) Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25:2730-738 CrossRef
    51. Tolstunov L (2006) Dental implant success-failure analysis: a concept of implant vulnerability. Implant Dent 15:341-46 CrossRef
    52. Weyts FA, Bosmans B, Niesing R, van Leeuwen JP, Weinans H (2003) Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation. Calcif Tissue Int 72:505-12 CrossRef
    53. Winer JP, Janmey PA, McCormick ME, Funaki M (2009) Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng Part A 15:147-54 CrossRef
    54. Yang X, Tare RS, Partridge KA, Roach HI, Clarke NM, Howdle SM, Shakesheff KM, Oreffo RO (2003a) Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering. J Bone Miner Res 18:47-7 CrossRef
    55. Yang XB, Green DW, Roach HI, Clarke NM, Anderson HC, Howdle SM, Shakesheff KM, Oreffo RO (2003b) Novel osteoinductive biomimetic scaffolds stimulate human osteoprogenitor activity–implications for skeletal repair. Connect Tissue Res 44 (Suppl 1):312-17 CrossRef
    56. Yang XB, Bhatnagar RS, Li S, Oreffo RO (2004) Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng 10:1148-159 CrossRef
    57. Yang Y, Magnay JL, Cooling L, El HA (2002) Development of a “mechano-active-scaffold for tissue engineering. Biomaterials 23:2119-126 CrossRef
    58. Yu J, Xie YJ, Xu D, Zhao SL (2009) Effect of cyclic strain on cell morphology, viability and proliferation of human dental pulp cells in vitro. Shanghai Kou Qiang Yi Xue 18:599-03
    59. Yu V, Damek-Poprawa M, Nicoll SB, Akintoye SO (2009) Dynamic hydrostatic pressure promotes differentiation of human dental pulp stem cells. Biochem Biophys Res Commun 386:661-65 CrossRef
    60. Zhang W, Walboomers XF, Van Kuppevelt TH, Daamen WF, Van Damme PA, Bian Z, Jansen JA (2008) In vivo evaluation of human dental pulp stem cells differentiated towards multiple lineages. J Tissue Eng Regen Med 2:117-25 CrossRef
    61. Zietek M, Gedrange T, Mikulewicz M (2008) Long term evaluation of biomaterial application in surgical treatment of periodontosis. J Physiol Pharmacol 59 (Suppl 5):81-6
  • 作者单位:Jun Ji (1) (2) (3)
    Weibin Sun (1) (3)
    Wenmei Wang (1) (3)
    Theresa Munyombwe (4)
    Xuebin B. Yang (2) (3) (5)

    1. Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, 210008, People’s Republic of China
    2. Biomaterials and Tissue Engineering Group, School of Dentistry, University of Leeds, Leeds, LS2 9LU, UK
    3. Nanjing-Leeds Joint Centre for Oral Health Science, No.30 Zhongyang Road, Nanjing, 210008, People’s Republic of China
    4. Centre for Epidemiology & Biostatistics, University of Leeds, LS2 9LU, Leeds, UK
    5. NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allenton Hospital, Leeds, LS7 4SA, UK
  • ISSN:1432-0878
文摘
Tooth loss often results in alveolar bone resorption because of lack of mechanical stimulation. Thus, the mechanism of mechanical loading on stem cell osteogenesis is crucial for alveolar bone regeneration. We have investigated the effect of mechanical loading on osteogenesis in human dental pulp stromal cells (hDPSCs) in a novel in vitro model. Briefly, 1?×-07 hDPSCs were seeded into 1?ml 3?% agarose gel in a 48-well-plate. A loading tube was then placed in the middle of the gel to mimic tooth-chewing movement (1?Hz, 3?×-0?min per day, n--). A non-loading group was used as a control. At various time points, the distribution of live/dead cells within the gel was confirmed by fluorescence markers and confocal microscopy. The correlation and interaction between the factors (e.g. force, time, depth and distance) were statistically analysed. The samples were processed for histology and immunohistochemistry. After 1- weeks of culture in the in-house-designed in vitro bioreactor, fluorescence imaging confirmed that additional mechanical loading increased the viable cell numbers over time as compared with the control. Cells of various phenotypes formed different patterns away from the reaction tube. The cells in the middle part of the gel showed enhanced alkaline phosphatase staining at week 1 but reduced staining at weeks 2 and 3. Additional loading enhanced Sirius Red and type I collagen staining compared with the control. We have thus successfully developed a novel in-house-designed in vitro bioreactor mimicking the biting force to enhance hDPSC osteogenesis in an agarose scaffold and to promote bone formation and/or prevent bone resorption.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700