Groebke–Blackburn–Bienaymé multicomponent reaction: emerging chemistry for drug discovery
详细信息    查看全文
  • 作者:Saad Shaaban ; Bakr F. Abdel-Wahab
  • 关键词:Diversity ; oriented synthesis ; DOS ; Isocyanide multicomponent reactions ; MCRs ; Kinase inhibitors ; Microwave ; Passerini reaction ; Ugi reaction
  • 刊名:Molecular Diversity
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 页码:233-254
  • 全文大小:2,920 KB
  • 参考文献:1.Moni L, Banfi L, Basso A, Brambilla A, Riva R (2014) Diversity-oriented synthesis of dihydrobenzoxazepinones by coupling the Ugi multicomponent reaction with a Mitsunobu cyclization. Beilstein J Org Chem 10:209–212. doi:10.​3762/​bjoc.​10.​16 CrossRef PubMed PubMedCentral
    2.Dandapani S, Germain AR, Jewett I, le Quement S, Marie JC, Muncipinto G, Duvall JR, Carmody LC, Perez JR, Engel JC, Gut J, Kellar D, Siqueira-Neto JL, McKerrow JH, Kaiser M, Rodriguez A, Palmer MA, Foley M, Schreiber SL, Munoz B (2013) Diversity-oriented synthesis yields a new drug lead for treatment of chagas disease. ACS Med Chem Lett 5:149–153. doi:10.​1021/​ml400403u CrossRef PubMed PubMedCentral
    3.Benito JM, Ortega-Caballero F (2013) Recent developments on synthetic tools towards structural and functional glycodiversity. Curr Med Chem 20:3986–4029. doi:10.​2174/​0929867311320999​0209 CrossRef PubMed
    4.Dandapani S, Comer E, Duvall JR, Munoz B (2012) Hits, leads and drugs against malaria through diversity-oriented synthesis. Future Med Chem 4:2279–2294. doi:10.​4155/​fmc.​12.​178 CrossRef PubMed
    5.Biggs-Houck JE, Younai A, Shaw JT (2010) Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr Opin Chem Biol 14:371–382. doi:10.​1016/​j.​cbpa.​2010.​03.​003 CrossRef PubMed
    6.Leon F, Rivera DG, Wessjohann LA (2008) Multiple multicomponent macrocyclizations including bifunctional building blocks (MiBs) based on Staudinger and Passerini three-component reactions. J Org Chem 73:1762–1767. doi:10.​1021/​jo7022125 CrossRef PubMed
    7.Domling A (1998) Isocyanide based multi component reactions in combinatorial chemistry. Comb Chem High T Scr 1:1–22
    8.Domling A (2000) The discovery of new isocyanide-based multi-component reactions. Curr Opin Chem Biol 4:318–323. doi:10.​1016/​S1367-5931(00)00095-8 CrossRef PubMed
    9.Banfi L, Riva R (2005) The passerini reaction. Org React 65:1–140. doi:10.​1002/​0471264180.​or065.​01
    10.Ugi I, Lohberger S, Karl R (1991) The passerini and ugir reactions. In: Trost BM, Fleming I (eds) Comprehensive organic synthesis. Pergamon, Oxford, pp 1083–1109CrossRef
    11.Ugi I, Meyr R (1958) Neue darstellungsmethode für isonitrile. Angew Chem Int Edit 70:702–703. doi:10.​1002/​ange.​19580702213 CrossRef
    12.Ugi I, Dömling A, Hörl W (1994) Multicomponent reactions in organic chemistry. Endeavour 18:115–122. doi:10.​1016/​S0160-9327(05)80086-9 CrossRef
    13.Zarganes-Tzitzikas T, Patil P, Khoury K, Herdtweck E, Dömling A (2015) Concise synthesis of Tetrazole-Ketopiperazines by two consecutive ugi reactions. Eur J Org Chem 2015:51–55. doi:10.​1002/​ejoc.​201403401 CrossRef
    14.Blackburn C, Guan B, Fleming P, Shiosaki K, Tsai S (1998) Parallel synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett 39:3635–3638. doi:10.​1016/​S0040-4039(98)00653-4 CrossRef
    15.Bienaymé H, Bouzid K (1998) A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew Chem Int Ed 37:2234–2237. doi:10.​1002/​(SICI)1521-3773(19980904)37:​16 CrossRef
    16.Groebke K, Weber L, Mehlin F (1998) Synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett 6:661–663. doi:10.​1055/​s-1998-1721 CrossRef
    17.Devi N, Rawal RK, Singh V (2015) Diversity-oriented synthesis of fused-imidazole derivatives via Groebke–Blackburn–Bienayme reaction: a review. Tetrahedron 71:183–232. doi:10.​1016/​j.​tet.​2014.​10.​032 CrossRef
    18.Shaabana S, Negm A, Ibrahim EE, Elrazak AA (2014) Hepatocellular carcinoma chemotherapeutic agents: efficacy and mode of action. Onc Rev 8:25–35. doi:10.​4081/​oncol.​2014.​246
    19.Shaaban S, Sasse F, Burkholz T, Jacob C (2014) Sulfur, selenium and tellurium pseudopeptides: synthesis and biological evaluation. Bioorg Med Chem 22:3610–3619. doi:10.​1016/​j.​bmc.​2014.​05.​019 CrossRef PubMed
    20.Shaaban S, Arafat MA, Hamama WS (2014) Vistas in the domain of organo selenocyanates. Arkivoc i, pp 470–505, doi:10.​3998/​ark.​5550190.​p008.​763
    21.Shaaban S, Arafat MA, Gaffer HE, Hamama WS (2014) Synthesis and anti-tumor evaluation of novel organoselenocyanates and symmetrical diselenides dyestuffs. Der Pharma Chemica 6:186– 193
    22.Abdel-Wahab BF, Shaaban S (2014) Thiazolothiadiazoles and thiazolooxadiazoles: synthesis and biological applications. Synthesis 46:1709–1716. doi:10.​1055/​s-0033-1338627 CrossRef
    23.Shaaban S, Diestel R, Hinkelmann B, Muthukumar Y, Verma RP, Sasse F, Jacob C (2012) Novel peptidomimetic compounds containing redox active chalcogens and quinones as potential anticancer agents. Eur J Med Chem 58:192–205. doi:10.​1016/​j.​ejmech.​2012.​09.​033 CrossRef PubMed
    24.Akritopoulou-Zanze I (2008) Isocyanide-based multicomponent reactions in drug discovery. Curr Opin Chem Biol 12:324–331. doi:10.​1016/​j.​cbpa.​2008.​02.​004 CrossRef PubMed
    25.Domling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89. doi:10.​1021/​cr0505728 CrossRef PubMed
    26.Ulaczyk-Lesanko A, Hall DG (2005) Wanted: new multicomponent reactions for generating libraries of polycyclic natural products. Curr Opin Chem Biol 9:266–276. doi:10.​1016/​j.​cbpa.​2005.​04.​003 CrossRef PubMed
    27.Pirrung MC, Das Sarma K (2004) Multicomponent reactions are accelerated in water. J Am Chem Soc 126:444–445. doi:10.​1021/​ja038583a CrossRef PubMed
    28.Domling A (2002) Recent advances in isocyanide-based multicomponent chemistry. Curr Opin Chem Biol 6:306–313. doi:10.​1016/​S1367-5931(02)00328-9 CrossRef PubMed
    29.Ugi I, Heck S (2001) The multicomponent reactions and their libraries for natural and preparative chemistry. Comb Chem High T Scr 4:1–34. doi:10.​2174/​1386207013331291​
    30.Domling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168–3210. doi:10.​1002/​1521-3773(20000915)39:​18 CrossRef
    31.Mecklenburg S, Shaaban S, Ba LA, Burkholz T, Schneider T, Diesel B, Kiemer AK, Röseler A, Becker K, Reichrath J, Stark A, Tilgen W, Abbas M, Wessjohann LA, Sasse F, Jacob C (2009) Exploring synthetic avenues for the effective synthesis of selenium- and tellurium-containing multifunctional redox agents. Org Biomol Chem 7:4753–4762. doi:10.​1039/​B907831B CrossRef PubMed
    32.Shaaban S, Ba LA, Abbas M, Burkholz T, Denkert A, Gohr A, Wessjohann LA, Sasse F, Weber W, Jacob C (2009) Multicomponent reactions for the synthesis of multifunctional agents with activity against cancer cells. Chem Commun 31:4702–4704. doi:10.​1039/​b823149d CrossRef
    33.Ramozzi R, Cheron N, El Kaim L, Grimaud L, Fleurat-Lessard P (2014) Predicting new Ugi-Smiles couplings: a combined experimental and theoretical study. Chemistry 20:9094–9099. doi:10.​1002/​chem.​201400336 PubMed
    34.Cheron N, Ramozzi R, El Kaim L, Grimaud L, Fleurat-Lessard P (2013) Substituent effects in Ugi-smiles reactions. J Phys Chem A 117:8035–8042. doi:10.​1021/​jp4052227 CrossRef PubMed
    35.Cheron N, Ramozzi R, El Kaim L, Grimaud L, Fleurat-Lessard P (2012) Challenging 50 years of established views on Ugi reaction: a theoretical approach. J Org Chem 77:1361–1366. doi:10.​1021/​jo2021554 CrossRef PubMed
    36.El Kaim L, Grimaud L (2009) Beyond the Ugi reaction: less conventional interactions between isocyanides and iminium species. Tetrahedron 65:2153–2171. doi:10.​1016/​j.​tet.​2008.​12.​002 CrossRef
    37.Hulme C, Lee YS (2008) Emerging approaches for the syntheses of bicyclic imidazo[1,2-x]-heterocycles. Mol Divers 12:1–15. doi:10.​1007/​s11030-008-9072-1 CrossRef PubMed
    38.Parenty AD, Song YF, Richmond CJ, Cronin L (2007) A general and efficient five-step one-pot procedure leading to nitrogen
    idgehead heterocycles containing an imidazole ring. Org Lett 9:2253–2256. doi:10.​1021/​ol070263z CrossRef PubMed
    39.Tian Y, Du D, Rai D, Wang L, Liu H, Zhan P, De Clercq E, Pannecouque C, Liu X (2014) Fused heterocyclic compounds bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 1: design, synthesis and biological evaluation of novel 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives. Bioorg Med Chem 22:2052–2059. doi:10.​1016/​j.​bmc.​2014.​02.​029 CrossRef PubMed
    40.Song Y, Zhan P, Zhang Q, Liu X (2013) Privileged scaffolds or promiscuous binders: a glance of pyrrolo[2,1-f][1,2,4]triazines and related bridgehead nitrogen heterocycles in medicinal chemistry. Curr Pharm Des 19:1528–1548. doi:10.​2174/​1381612811319080​020 PubMed
    41.Della EW, Knill AM (1996) Synthesis of nitrogen Bridgehead bicyclic heterocycles via ring-closure of beta-ammonio 5-hexenyl radicals. J Org Chem 61:7529–7533. doi:10.​1021/​jo960886i CrossRef PubMed
    42.Meng T, Zhang Z, Hu D, Lin L, Ding J, Wang X, Shen J (2007) Three-component combinatorial synthesis of a substituted 6H-pyrido[2’,1’:2,3]imidazo- [4,5-c]isoquinolin-5(6H)-one library with cytotoxic activity. J Comb Chem 9:739–741. doi:10.​1021/​cc0700593 CrossRef PubMed
    43.Shahrisa A, Safa KD, Esmati S (2014) Synthesis, spectroscopic and DFT studies of novel fluorescent dyes: 3-Aminoimidazo[1,2-a]pyridines possessing 4-pyrone moieties. Spectrochim Acta A 117:614–621. doi:10.​1016/​j.​saa.​2013.​09.​056 CrossRef
    44.Lyon MA, Kercher TS (2004) Glyoxylic acid and MP-glyoxylate: efficient formaldehyde equivalents in the 3-CC of 2-aminoazines, aldehydes, and isonitriles. Org Lett 6:4989–4992. doi:10.​1021/​ol0478234 CrossRef PubMed
    45.Sharma A, Li H (2011) A regioselective and high-yielding method for formaldehyde inclusion in the 3CC Groebke–Blackburn–Bienaymé reaction: one-step access to 3-aminoimidazoazines. Synlett 10:1407–1412. doi:10.​1055/​s-0030-1260568
    46.Sun C, Ji S, Liu Y (2008) A novel, simple and efficient synthesis of 3-Amino-benzo[d]imidazo[2,1-b]thiazole derivatives via a multicomponent procedure. J Chin Chem Soc 55:292–296. doi:10.​1002/​jccs.​200800043 CrossRef
    47.Lamberth C (2011) First synthesis of 3-Amino-2-arylimidazo[1,2-b]pyridazines by Groebke–Blackburn reaction. Synlett 12:1740–1744. doi:10.​1055/​s-0030-1260940 CrossRef
    48.Guchhait SK, Madaan C (2011) Groebke–Blackburn–Bienaymé multicomponent reaction in scaffold-modification of adenine, guanine, and cytosine: synthesis of aminoimidazole-condensed nucleobases. Tetrahedron Lett 52:56–58. doi:10.​1016/​j.​tetlet.​2010.​10.​143 CrossRef
    49.Khan AT, Sidick Basha R, Lal M (2012) Bromodimethylsulfonium bromide (BDMS) catalyzed synthesis of imidazo[1,2-a]pyridine derivatives and their fluorescence properties. Tetrahedron Lett 53:2211–2217. doi:10.​1016/​j.​tetlet.​2012.​02.​078 CrossRef
    50.Parchinsky VZ, Shuvalova O, Ushakova O, Kravchenko DV, Krasavin M (2006) Multi-component reactions between 2-aminopyrimidine, aldehydes and isonitriles: the use of a nonpolar solvent suppresses formation of multiple products. Tetrahedron Lett 47:947–951. doi:10.​1016/​j.​tetlet.​2005.​11.​152 CrossRef
    51.Shukla NM, Salunke DB, Yoo E, Mutz CA, Balakrishna R, David SA (2012) Antibacterial activities of Groebke–Blackburn–Bienaymé-derived imidazo[1,2-a]pyridin-3-amines. Bioorg Med Chem 20:5850–5863. doi:10.​1016/​j.​bmc.​2012.​07.​052 CrossRef PubMed PubMedCentral
    52.Guchhait SK, Madaan C (2009) An efficient, regioselective, versatile synthesis of N-Fused 2- and 3-Aminoimidazoles via Ugi-Type multicomponent reaction mediated by Zirconium(IV) Chloride in polyethylene Glycol-400. Synlett 4:628–632. doi:10.​1055/​s-0028-1087915 CrossRef
    53.Adib M, Mahdavi M, Noghani MA, Mirzaei P (2007) Catalyst-free three-component reaction between 2-aminopyridines (or 2-aminothiazoles), aldehydes, and isocyanides in water. Tetrahedron Lett 48:7263–7265. doi:10.​1016/​j.​tetlet.​2007.​08.​049 CrossRef
    54.Che C, Xiang J, Wang G, Fathi R, Quan J, Yang Z (2007) One-pot synthesis of quinoline-based Tetracycles by a Tandem three-component reaction. ACS Comb Sci 9:982–989. doi:10.​1021/​cc070058a
    55.Shaabani A, Soleimani E, Maleki A (2007) One-pot three-component synthesis of 3-Aminoimidazo[1,2-\(a\) ]pyridines and -pyrazines in the presence of silica sulfuric acid. Monatsh Chem 138:73–76CrossRef
    56.Shaabani A, Rezazadeh F, Soleimani E (2008) Ammonium chloride catalyzed one-pot synthesis of imidazo[1,2-\(a\) ]pyridines. Monatsh Chem 139:931–933CrossRef
    57.Varma RS, Kumar D (1999) Microwave-accelerated three-component condensation reaction on clay: solvent-free synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines. Tetrahedron Lett 40:7665–7669. doi:10.​1016/​S0040-4039(99)01585-3 CrossRef
    58.Mironov MA, Tokareva MI, Ivantsova MN, Mokrushin VS (2006) New catalytic system for the synthesis of imidazo[1,2-\(a\) ]pyridines by the Ugi reaction. Russ Chem Bull 55:1835–1839. doi:10.​1007/​s11172-006-0494-6 CrossRef
    59.Dimauro EF, Kennedy JM (2007) Rapid synthesis of 3-amino-imidazopyridines by a microwave-assisted four-component coupling in one pot. J Org Chem 72:1013–1016. doi:10.​1021/​jo0622072 CrossRef PubMed
    60.Umkehrer M, Ross G, Jäger N, Burdack C, Kolb J, Hu H, Alvim-Gaston M, Hulme C (2007) Expeditious synthesis of imidazo[1,2-c]pyrimidines via a [4+1]-cycloaddition. Tetrahedron Lett 48:2213–2216. doi:10.​1016/​j.​tetlet.​2007.​01.​061 CrossRef
    61.Rousseau AL, Matlaba P, Parkinson CJ (2007) Multicomponent synthesis of imidazo[1,2-a]pyridines using catalytic zinc chloride. Tetrahedron Lett 48:4079–4082. doi:10.​1016/​j.​tetlet.​2007.​04.​008 CrossRef
    62.Rostamnia S, Hassankhani A (2013) \(\text{ RuCl }_{3}\) -catalyzed solvent-free Ugi-type Groebke–Blackburn synthesis ofaminoimidazole heterocycles. Roy Soc Chem Adv 40:18626–18629. doi:10.​1039/​C3RA42752H
    63.Shaabani A, Soleimani E, Sarvary A, Rezayan AH, Maleki A (2009) Tin(II) Chloride dihydrate catalyzed groebke condensation: an efficient protocol for the synthesis of 3-Aminoimidazo[1,2-a]pyridines. Chinese J Chem 27:369–371. doi:10.​1002/​cjoc.​200990060 CrossRef
    64.Krasavin M, Tsirulnikov S, Nikulnikov M, Kysil V, Ivachtchenko A (2008) Poorly reactive 5-piperazin-1-yl-1,3,4-thiadiazol-2-amines rendered as valid substrates for Groebke–Blackburn type multi-component reaction with aldehydes and isocyanides using TMSCl as a promoter. Tetrahedron Lett 49:5241–5243. doi:10.​1016/​j.​tetlet.​2008.​06.​113 CrossRef
    65.Guchhait SK, Madaan C (2010) Towards molecular diversity: dealkylation of tert-butyl amine in Ugi-type multicomponent reaction product establishes tert-butyl isocyanide as a useful convertible isonitrile. Org Biomol Chem 8:3631–3634. doi:10.​1039/​c0ob00022a CrossRef PubMed
    66.Pereshivko OP, Peshkov VA, Ermolat’ev DS, Van der Eycken E (2013) Fast Assembly of 1\(H\) -Imidazo[1,2-\(a\) ]imidazol-5-amines via Groebke–Blackburn–Bienaymé reaction with 2-Aminoimidazoles. Synlett 24:351–354CrossRef
    67.Rostamnia S, Lamei K, Mohammadquli M, Sheykhan M, Heydari A (2012) Nanomagnetically modified sulfuric acid (\(\gamma \) -Fe2O3@SiO2-OSO3H): an efficient, fast, and reusable green catalyst for the Ugi-like Groebke–Blackburn–Bienaymé three-component reaction under solvent-free conditions. Tetrahedron Lett 53:5257–5260. doi:10.​1016/​j.​tetlet.​2012.​07.​075 CrossRef
    68.Chen JJ, Golebiowski A, McClenaghan J, Klopfenstein SR, West L (2001) Universal rink-isonitrile resin: application for the traceless synthesis of 3-acylamino imidazo[1,2-a]pyridines. Tetrahedron Lett 42:2269–2271. doi:10.​1016/​S0040-4039(01)00159-9 CrossRef
    69.Lu Y, Zhang W (2004) Microwave-assisted Synthesis of a 3-Aminoimidazo[1,2-a]-pyridine/pyrazine Library by fluorous multicomponent reactions and subsequent cross-coupling reactions. QSAR Comb Sci 23:827–835. doi:10.​1002/​qsar.​200420045 CrossRef PubMed PubMedCentral
    70.Lee C, Hsu W, Chen C, Sun C (2013) A telescoping synthesis of chimeric polyheterocycles through a piperidine-mediated multicomponent reaction. Eur J Org Chem 2013:2201–2208. doi:10.​1002/​ejoc.​201201645 CrossRef
    71.Mert-Balci F, Conrad J, Beifuss U (2012) Microwave-assisted three-component reaction in conventional solvents and ionic liquids for the synthesis of amino-substituted imidazo[1,2-a]pyridines. Arkivoc iii, pp 243–256, doi:10.​3998/​ark.​5550190.​0013.​318
    72.Bell CE, Shaw AY, De Moliner F, Hulme C (2014) MCRs reshaped into a switchable microwave-assisted protocol toward 5-aminoimidazoles and dihydrotriazines. Tetrahedron 7:54–59. doi:10.​1016/​j.​tet.​2013.​11.​035 CrossRef PubMed PubMedCentral
    73.Bagley MC, Fusillo V, Jenkins RL, Lubinu MC, Mason C (2013) One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor. Beilstein J Org Chem 9:1957–1968. doi:10.​3762/​bjoc.​9.​232 CrossRef PubMed PubMedCentral
    74.Georgescu E, Georgescu F, Draghici C, Cristian L, Popa MM, Dumitrascu F (2013) Fast and green one-pot multicomponent synthesis of a library of pyrrolo [1,2-c] pyrimidines under microwave irradiation. Comb Chem High T Scr 16:851–857. doi:10.​2174/​1386207311316999​0050
    75.Wang SL, Zhang G, Jie D, Jiang B, Wang XH, Tu SJ (2012) Microwave-assisted multicomponent reactions: rapid and regioselective formation of new extended angular fused aza-heterocycles. Comb Chem High T Scr 15:400–410. doi:10.​2174/​1386207128001944​59
    76.Jiang B, Tu SJ (2011) Active methylene-based multicomponent reactions under microwave heating. Chimia (Aarau) 65:925–931. doi:10.​2533/​chimia.​2011.​925 CrossRef
    77.Ireland SM, Tye H, Whittaker M (2003) Microwave-assisted multi-component synthesis of fused 3-aminoimidazoles. Tetrahedron Lett 44:4369–4371. doi:10.​1016/​S0040-4039(03)00941-9 CrossRef
    78.Guasconi M, Lu X, Massarotti A, Caldarelli A, Ciraolo E, Tron GC, Hirsch E, Sorba G, Pirali T (2011) Groebke multicomponent reaction and subsequent nucleophilic aromatic substitution for a convenient synthesis of 3,8-diaminoimidazo[1,2-a]pyrazines as potential kinase inhibitors. Org Biomol Chem 9:4144–4149. doi:10.​1039/​c1ob05336a CrossRef PubMed
    79.Salunke DB, Yoo E, Shukla NM, Balakrishna R, Malladi SS, Serafin KJ, Day VW, Wang X, David SA (2012) Structure-activity relationships in human Toll-like receptor 8-active 2,3-diamino-furo[2,3-c]pyridines. J Med Chem 55:8137–8151. doi:10.​1021/​jm301066h CrossRef PubMed PubMedCentral
    80.Arnould M, Hiebel MA, Massip S, Leger JM, Jarry C, Berteina-Raboin S, Guillaumet G (2013) Efficient metal-free synthesis of various pyrido[\(2^\prime,1^\prime :2,3\) ]imidazo- [4,5-b]quinolines. Chemistry 19:12249–12253. doi:10.​1002/​chem.​201300961 CrossRef PubMed
    81.Semreen MH, El-Awady R, Abu-Odeh R, Saber-Ayad M, Al-Qawasmeh RA, Chouaib S, Voelter W, Al-Tel TH (2013) Tandem multicomponent reactions toward the design and synthesis of novel antibacterial and cytotoxic motifs. Curr Med Chem 20:1445–1459. doi:10.​2174/​0929867311320110​007 CrossRef PubMed
    82.Lacerda RB, Sales NM, da Silva LL, Tesch R, Miranda AL, Barreiro EJ, Fernandes PD, Fraga CA (2014) Novel potent imidazo[1,2-a]pyridine-\(N\) -Glycinyl-hydrazone inhibitors of TNF-alpha production: in vitro and in vivo studies. PLoS One 9:e91660. doi:10.​1371/​journal.​pone.​0091660 CrossRef PubMed PubMedCentral
    83.Mandair GS, Light M, Russell A, Hursthouse M, Bradley M (2002) Re-evaluation of the outcome of a multiple component reaction–2- and 3-amino-imidazo[1,2-a]pyrimidines? Tetrahedron Lett 43:4267–4269. doi:10.​1016/​S0040-4039(02)00709-8 CrossRef
    84.Bode ML, Gravestock D, Moleele SS, van der Westhuyzen CW, Pelly SC, Steenkamp PA, Hoppe HC, Khan T, Nkabinde LA (2011) Imidazo[1,2-a]pyridin-3-amines as potential HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem 19:4227–4237. doi:10.​1016/​j.​bmc.​2011.​05.​062 CrossRef PubMed
    85.Antuch W, Menon S, Chen QZ, Lu Y, Sakamuri S, Beck B, Schauer-Vukasinovic V, Agarwal S, Hess S, Domling A (2006) Design and modular parallel synthesis of a MCR derived alpha-helix mimetic protein-protein interaction inhibitor scaffold. Bioorg Med Chem Lett 16:1740–1743. doi:10.​1016/​j.​bmcl.​2005.​11.​102 CrossRef PubMed
    86.Jang ES, Lee SY, Cha EJ, Sun IC, Kwon IC, Kim D, Kim YI, Kim K, Ahn CH (2014) Fluorescent dye labeled iron oxide/silica core/shell nanoparticle as a multimodal imaging probe. Pharm Res 31:3371–3378. doi:10.​1007/​s11095-014-1426-z CrossRef PubMed
    87.Chevalier A, Renard PY, Romieu A (2014) Straightforward access to water-soluble unsymmetrical sulfoxanthene dyes: application to the preparation of far-red fluorescent dyes with large stokes’ shifts. Chem-Eur J 20:8330–8337. doi:10.​1002/​chem.​201402306 CrossRef PubMed
    88.Gracie K, Smith WE, Yip P, Sutter JU, Birch DJ, Graham D, Faulds K (2014) Interaction of fluorescent dyes with DNA and spermine using fluorescence spectroscopy. Analyst 139:3735–3743. doi:10.​1039/​c4an00680a CrossRef PubMed
    89.Szczurek AT, Prakash K, Lee HK, Zurek-Biesiada DJ, Best G, Hagmann M, Dobrucki JW, Cremer C, Birk U (2014) Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes. Nucleus 5:331–340. doi:10.​4161/​nucl.​29564 CrossRef PubMed PubMedCentral
    90.Woydziak ZR, Fu L, Peterson BR (2014) Efficient and scalable synthesis of 4-carboxy-pennsylvania green methyl ester: a hydrophobic building block for fluorescent molecular probes. Synthesis 46:158–164. doi:10.​1055/​s-0033-1338535 PubMed PubMedCentral
    91.Burchak ON, Mugherli L, Ostuni M, Lacapere JJ, Balakirev MY (2011) Combinatorial discovery of fluorescent pharmacophores by multicomponent reactions in droplet arrays. J Am Chem Soc 133:10058–10061. doi:10.​1021/​ja204016e CrossRef PubMed
    92.Cai R, Wang D, Chen Y, Yan W, Geise NR, Sharma S, Li H, Petersen JL, Li M, Shi X (2014) Facile synthesis of fluorescent active triazapentalenes through gold-catalyzed triazole-alkyne cyclization. Chem Commun 50:7303–7305. doi:10.​1039/​c4cc03175j CrossRef
    93.Pais VF, Lassaletta JM, Fernandez R, El-Sheshtawy HS, Ros A, Pischel U (2014) Organic fluorescent thermometers based on borylated arylisoquinoline dyes. Chemistry 20:7638–7645. doi:10.​1002/​chem.​201402027 CrossRef PubMed
    94.Sun JW, Lee JH, Moon CK, Kim KH, Shin H, Kim JJ (2014) A fluorescent organic light-emitting diode with 30% external quantum efficiency. Adv Mater 26:5684–5688. doi:10.​1002/​adma.​201401407 CrossRef PubMed
    95.Li L, Hopkinson MN, Yona RL, Bejot R, Gee AD, Gouverneur V (2011) Convergent \(^{18}\text{ F }\) radiosynthesis: a new dimension for radiolabelling. Chem Sci 2:123–131. doi:10.​1039/​C0SC00362J CrossRef
    96.Baviskar AT, Madaan C, Preet R, Mohapatra P, Jain V, Agarwal A, Guchhait SK, Kundu CN, Banerjee UC, Bharatam PV (2011) N-fused imidazoles as novel anticancer agents that inhibit catalytic activity of topoisomerase IIalpha and induce apoptosis in G1/S phase. J Med Chem 54:5013–5030. doi:10.​1021/​jm200235u CrossRef PubMed
    97.Sanghai N, Jain V, Preet R, Kandekar S, Das S, Trivedi N, Mohapatra P, Priyadarshani Garima, Kashyap Maneesh, Das D, Satapathy SR, Siddharth S, Guchhait SK, Kundu CN, Bharatamab PV (2014) Combretastatin A-4 inspired novel 2-aryl-3-arylamino-imidazo-pyridines/pyrazines as tubulin polymerization inhibitors, antimitotic and anticancer agents. Med Chem Comm 6:766–782. doi:10.​1039/​C3MD00357D CrossRef
    98.Odell LR, Nilsson MT, Gising J, Lagerlund O, Muthas D, Nordqvist A, Karlén A, Larhed M (2009) Functionalized 3-amino-imidazo[1,2-a]pyridines: a novel class of drug-like Mycobacterium tuberculosis glutamine synthetase inhibitors. Bioorg Med Chem Lett 19:4790–4793. doi:10.​1016/​j.​bmcl.​2009.​06.​045 CrossRef PubMed
    99.Kumar M, Makhal B, Gupta VK, Sharma A (2014) In silico investigation of medicinal spectrum of imidazo-azines from the perspective of multitarget screening against malaria, tuberculosis and Chagas disease. J Mol Graph Model 50:1–9. doi:10.​1016/​j.​jmgm.​2014.​02.​006 CrossRef PubMed
  • 作者单位:Saad Shaaban (1)
    Bakr F. Abdel-Wahab (2)

    1. Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 23768, Egypt
    2. Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, 12622, Egypt
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Polymer Sciences
    Organic Chemistry
    Pharmacy
  • 出版者:Springer Netherlands
  • ISSN:1573-501X
文摘
The Groebke–Blackburn–Bienaymé reaction (GBBR) is used for the one-pot synthesis of therapeutically relevant fused imidazoles bridgehead nitrogen heterocyclic compounds from readily available aldehyde, isocyanide and amidine building blocks. The reaction is driven by a wide range of catalysts and can be performed either under solvent or solvent-free conditions, or under microwave irradiation as heat source. The GBBR products can be used for the synthesis of a variety of more complex scaffolds via postmodification reactions. These include cyclization and nucleophilic substitution as well as further MCRs. The GBBR reaction has seen diverse applications in combinatorial and medicinal chemistry and its products are of great use in drug discovery. In this review, we summarize the efforts of the chemistry community in the progress and applications of GBBR since 1998. This review also includes some biological profiles and synthetic scopes of GBBR products. The component variations, postmodifications and secondary transformations will also be discussed throughout this review. Keywords Diversity-oriented synthesis DOS Isocyanide multicomponent reactions MCRs Kinase inhibitors Microwave Passerini reaction Ugi reaction

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700