Development of bog-like vegetation during terrestrialization of polyhumic lakes in north-eastern Poland is not accompanied by ecosystem ombrotrophication
详细信息    查看全文
  • 作者:Pawe? Pawlikowski (1)
    Ewelina Rutkowska (1)
    Stanis?aw K?osowski (2)
    Ewa Jab?ońska (1)
    Danuta Drzymulska (3)
  • 关键词:Polyhumic lake ; Dystrophic lake ; Lake overgrowing ; Poor fen ; Bog ; Surface water chemistry
  • 刊名:Hydrobiologia
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:737
  • 期:1
  • 页码:87-95
  • 全文大小:374 KB
  • 参考文献:1. Bajkiewicz-Grabowska, E., 1997. Charakterystyka fizycznogeograficzna zlewni eksperymentalnej Wigierskiej Stacji Bazowej. In Krzysztofiak, L. (ed.), Zintegrowany Monitoring ?rodowiska Przyrodniczego, Stacja Bazowa Wigry (Wigierski Park Narodowy). Państwowy Inspektor Ochrony ?rodowiska, Biblioteka Monitoringu ?rodowiska, Warszawa: 19-8.
    2. Braun-Blanquet, J., 1951. Pflanzensociologie. Springer, Wien.
    3. Catling, P. M., B. Freedman, C. Stewart, J. J. Kerekes & L. P. Lefkovitch, 1985. Aquatic plants of acid lakes in Kejimkujik National Park, Nova Scotia; floristic composition and relation to water chemistry. Canadian Journal of Botany 64: 724-29. CrossRef
    4. Charman, D. J., A. D. Brown, D. Hendon & E. Karofeld, 2004. Testing the relationship between Holocene peatland palaeoclimate reconstructions and instrumental data at two European sites. Quaternary Science Reviews 23: 137-43. CrossRef
    5. Chmiel, S., 2009. Hydrochemical evaluation of dystrophy of the water bodies in the ??czna and W?odawa area in the years 2000-008. Limnological Review 9: 153-58.
    6. Clymo, R. S., 1963. Ion exchange in Sphagnum and its relation to bog ecology. Annals of Botany 27: 309-24.
    7. Damman, A. W. H., 1995. Major mire vegetation units in relation to the concepts of ombrotrophy and minerotrophy: a worldwide perspective. Gunneria 70: 23-4.
    8. Dítě, D., J. Navrátilova, M. Hájek, M. Valachovi? & D. Pukajová, 2006. Habitat variability and classification of Utricularia-communities: comparison of peat depressions in Slovakia and T?eboň basin. Preslia 7: 331-43.
    9. Drzymulska, D. & P. Zieliński, 2013. Developmental changes in the historical and present-day trophic status of brown water lakes. Are humic water bodies a uniform aquatic ecosystem? Wetlands 33(5): 909-19. CrossRef
    10. Drzymulska, D., S. K?osowski, P. Pawlikowski, P. Zieliński & E. Jab?ońska, 2013. The historical development of vegetation of foreshore mires beside humic lakes; different successional pathways under various environmental conditions. Hydrobiologia 703(1): 15-1. CrossRef
    11. Du Rietz, G. E., 1954. Die Mineralbodenwasserzeigergrenze als Grundlage einer natürlichen Zweigliederung der Nord- und Mitteleurop?ischen Moore. Vegetatio 5-: 571-85. CrossRef
    12. Ellenberg, H., 1986. Vegetation Mitteleuropas mit den Alpen in ?kologischer Sicht, 4th ed. E. Ulmer Verlag, Stuttgart.
    13. Fay, E. & C. Lavoie, 2009. The impact of birch seedlings on evapotranspiration from a mined peatland: an experimental study in southern Quebec, Canada. Mires and Peat 5: 1-.
    14. G?bka, M. & P. Owsianny, 2006. Shallow humic lakes of the Wielkopolska region -relation between dystrophy and eutrophy in lake ecosystems. Limnological Review 6: 95-02.
    15. G?bka, M., P. M. Owsianny & T. Sobczyński, 2004. Acidic lakes in the Wielkopolska region -physico-chemical properties of water, bottom sediments and the aquatic micro- and macrovegetation. Limnological Review 4: 81-8.
    16. Glaser, P. H., D. I. Siegel, E. A. Romanowicz & Y. P. Shen, 1997. Regional linkages between raised bogs and the climate, groundwater, and landscape of north-western Minnesota. Journal of Ecology 85: 3-6. CrossRef
    17. Górniak, A., 1996. Substancje humusowe i ich rola w funkcjonowaniu ekosystemów s?odkowodnych. Disserationes Universitatis Varsoviensis 448. Uniwersytet Warszawski, Filia w Bia?ymstoku, Bia?ystok.
    18. Górniak, A. (ed.), 2006. Jeziora Wigierskiego Parku Narodowego. Wydawnictwo Uniwersytetu w Bia?ymstoku, Bia?ystok.
    19. Górniak, A., E. Jekatieryńczuk-Rudczyk & P. Dobrzyń, 1999. Hydrochemistry of three dystrophic lakes in northeaster Poland. Acta Hydrochimica et Hydrobiologica 27: 12-8. CrossRef
    20. Granlund, E., 1932. De svenska h?gmossarnas geologi. Sveriges Geologiska Unders?kning C 373: 1-93.
    21. Ha?as, S., M. S?owiński & M. Lamentowicz, 2008. Relacje mi?dzy czynnikami meteorologicznymi i hydrologi? ma?ego torfowiska mszarnego na Pomorzu. Studia Limnologica et Telmatologica 2: 15-6.
    22. Hansen, K., 1962. The dystrophie lake type. Hydrobiologia 19: 183-91. CrossRef
    23. Hill, M. O., 1979. TWINSPAN: a FORTRAN Program for Arranging Multivariate Data in an Ordered Two-Way Table by Classification of the Individuals and Attributes. Cornel University, Ithaca, New York, Ecology and Systematics.
    24. Keskitalo, J., K. Salonen & A.-L. Holopainen, 1998. Long-term fluctuations in environmental conditions, plankton and macrophytes in a humic lake, Valkea-Kotinen. Boreal Environment Research 3: 251-62.
    25. Klavins, M., V. Rodionov & I. Druvietis, 2003. Aquatic chemistry and humic substances in bog lakes in Latvia. Boreal Environment Research 8: 113-23.
    26. K?osowski, S., 2002. Temporal and spatial variation of habitat conditions in the zonation of vegetation in the late stages of lake overgrowth. Acta Societatis Botanicorum Poloniae 71: 329-37. CrossRef
    27. Luoto, T. P., L. Nevalainen, T. Kauppila, M. Tammelin & K. Sarmaja-Korjonen, 2012. Diatom-inferred total phosphorus from dystrophic Lake Arapisto, Finland, in relation to Holocene paleoclimate. Quaternary Research 78: 248-55. CrossRef
    28. Malmer, N., 1986. Vegetational gradients in relation to environmental conditions in northwestern European mires. Canadian Journal of Botany 64: 375-83. CrossRef
    29. Malmer, N., G. Svensson & B. Wallén, 2011. Carbon and mass balance in a South Swedish ombrotrophic bog: processes and variation during recent centuries. Mires and Peat 8: 1-6.
    30. Marek, S., 1992. Transformation of lakes in mires. Acta Societatis Botanicorum Poloniae 61: 103-13. CrossRef
    31. Milius, A. & H. Starast, 1997. A three-parameter trophic state index for small lakes. Proceedings of the Estonian Academy of Sciences, Biology and Ecology 46: 27-9.
    32. Mucina, L., 1997. Conspectus of classes of European vegetation. Folia Geobotanica et Phytotaxonomica 32: 117-72. CrossRef
    33. Naumann, E., 1931. Limnologische Terminologie. Handbuch der biologischen Arbaitsmethoden, Sect. IX, Part. 8. Urban und Schwarzenberg, Berlin.
    34. Owsianny, P. M. & M. G?bka, 2006. Spatial heterogeneity of biotic and abiotic habitat conditions of the lake-bog ecosystem Ku?niczek (NW Poland). Limnological Review 6: 223-31.
    35. Price, J. S., 1996. Hydrology and microclimate of a partly restored cutover bog, Quebec. Hydrological Processes 10: 1263-272. CrossRef
    36. Proctor, M. C. F., 1992. Regional and local variation in the chemical composition of ombrogenous mire waters in Britain and Ireland. Journal of Ecology 80: 719-36.
    37. Proctor, M. C. F., 2003. Malham Tarn Moss -the surface-water chemistry of an ombrotrophic bog. Field Studies 10: 553-78.
    38. Role?ek, J., 2005. Vegetation types of dry-mesic oak forests in Slovakia. Preslia 77: 241-67.
    39. Role?ek, J., L. Tichy, D. Zeleny & M. Chytry, 2009. Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. Journal of Vegetation Science 20: 596-02. CrossRef
    40. Rydin, H. & J. Jeglum, 2006. The biology of peatlands. Oxford University Press, New York. CrossRef
    41. Sachse, A., D. Babenzien, G. Ginzel, J. Gelbrecht & C. E. W. Steinberg, 2001. Characterization of dissolved organic carbon (DOC) in a dystrophic lake and an adjacent fen. Biogeochemistry 54: 279-96. CrossRef
    42. Schoning, K., D. J. Charman & S. Wastegard, 2005. Reconstructed water tables from two ombrotrophic mires in eastern central Sweden compared with instrumental meteorological data. The Holocene 15: 111-18. CrossRef
    43. Sj?rs, H., 1950. On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2: 241-58. CrossRef
    44. Sobotka, D., 1967. Ro?linno?? strefy zarastania bezodp?ywowych jezior Suwalszczyzny. Monographiae Botanicae 2: 175-58.
    45. Sottocornola, M. & G. Kiely, 2010. Energy fluxes and evaporation mechanisms in an Atlantic blanket bog in southwestern Ireland. Water Resources Research 46. doi:10.1029/2010WR009078 .
    46. Stangenberg, M., 1936. Szkic limnologiczny na tle stosunków hydrochemicznych Pojezierza Suwalskiego. Instytut Badawczy Le?nictwa, Rozprawy i Sprawozdania A 19: 7-5.
    47. Succow, M. & H. Joosten, (eds) 2001. Landschafts?kologische Moorkunde. 2. v?ll. bearb. Aufl. E. Schweizerbart’sche Verlag, Stuttgart.
    48. Tahvanainen, T., T. Sallantaus, R. Heikkil? & K. Tolonen, 2002. Spatial variation of mire surface water chemistry and vegetation in northeastern Finland. Annales Botanici Fennici 39: 235-51.
    49. Taipale, S., P. Kankaala & R. I. Jones, 2007. Contributions of different organic carbon sources to Daphnia in the pelagic foodweb of a small polyhumic lake: results from mesocosm DI13C-additions. Ecosystems 10: 757-72. CrossRef
    50. Ter Braak, C. J. F. & P. ?milauer, 1998. CANOCO reference manual and user’s guide to Canoco for Windows, Software for canonical community ordination (version 4.). Center for Biometry Wageningen (Wageningen, NL) and Microcomputer Power (Ithaca, NY, USA).
    51. Thienemann, A., 1922. Biologische Seetypen und die Gründung einer hydrobiologischen Anstalt am Bodensee. Archiv für Hydrobiologie 13: 347-70.
    52. Tichy, L., 2002. JUICE, software for vegetation classification. Journal of Vegetation Science 13: 451-53. CrossRef
    53. Vitt, D. H., 2000. Peatlands: ecosystems dominated by bryophytes. In Shaw, A. J. & B. Goffinet (eds), Bryophyte biology. University Press, Cambridge: 312-43. CrossRef
    54. Wheeler, B. D. & C. F. Proctor, 2000. Ecological gradients, subdivisions and terminology of north-west European mires. Journal of Ecology 88: 187-03. CrossRef
    55. Williamson, C. E., D. P. Morris, M. L. Pace & O. G. Olson, 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnology and Oceanography 44: 795-03. CrossRef
    56. Wiszniewski, J., 1953. Uwagi w sprawie typologii jezior polskich. Polskie Archiwum Hydrobiologii 1: 11-3.
    57. Wojciechowski, I., 1999. Warunki funkcjonowania ekosystemów torfowiskowych i wodno-torfowiskowych w Polsce. In Radwan, S. & R. Kornijów (eds), Problemy aktywnej ochrony ekosystemów wodnych i torfowiskowych w polskich parkach narodowych. Wydawnictwo UMCS, Lublin: 57-3.
    58. Zak, D., J. Gelbrecht & C. E. W. Steinberg, 2004. Phosphorus retention at the redox interface of peatlands adjacent to surface waters in northeast Germany. Biogeochemistry 70: 357-68. CrossRef
    59. Zar, H. J., 1999. Biostatistical analysis, 4th ed. Prentice-Hall, Upper Saddle River, New Jersey.
    60. Zieliński, P., J. Ejsmont-Karabin, M. Grabowska & M. Karpowicz, 2011. Ecological status of shallow Lake Gorbacz (NE Poland) in its final stage before drying up. Oceanological et Hydrobiological Studies 40: 1-2. CrossRef
    61. ?urek, S., K. Bińka & D. Drzymulska, 2009. Torfowisko Sucharu Dembowskich. Prace Komisji Paleogeografii Czwartorz?du Polskiej Akademii Umiej?tno?ci 7: 99-06.
  • 作者单位:Pawe? Pawlikowski (1)
    Ewelina Rutkowska (1)
    Stanis?aw K?osowski (2)
    Ewa Jab?ońska (1)
    Danuta Drzymulska (3)

    1. Department of Plant Ecology and Environmental Conservation, Institute of Botany, Faculty of Biology, University of Warsaw, Biological and Chemical Research Centre, ul. ?wirki i Wigury 101, 02-089, Warsaw, Poland
    2. Department of Environmental Protection and Modelling, The Jan Kochanowski University, ul. ?wi?tokrzyska 15, 25-406, Kielce, Poland
    3. Department of Botany, Institute of Biology, University of Bia?ystok, ?wierkowa 20b, 15-950, Bia?ystok, Poland
  • ISSN:1573-5117
文摘
The aim of the present study was to use the analysis of surface water chemistry to understand vegetation succession pathways in terrestrializing polyhumic lakes. We hypothesized that Sphagnum mire development was accompanied by a decrease in the mineral content in water. A total of 111 vegetation plots along 23 transects were analysed in 11 lakes and adjacent peat lands in the Wigry National Park (NE Poland). The vegetation of the lake-mire systems forms distinct zones: (1) nymphaeid-, bladderwort- and bryophyte-dominated aquatic vegetation; (2) sedge-dominated edge of the Sphagnumcarpet; (3) quaking, extremely poor fen with various Cyperaceae; (4) non-quaking, Eriophorum vaginatum-dominated bog-like vegetation and (5) pine woodland. Surface water corrected conductivity (ECcorr.), pH, COD-KMnO4 and Ca2+, Mg2+, Fetot. and SiO2 were measured along the transects. The environmental gradients best explaining the observed pattern were pH (with the highest values in the lake and the lowest in the bog-like vegetation) and COD-KMnO4 (showing an inverse direction). At least in some Sphagnum-mires conditions were more minerotrophic than in the lakes. The process of humic lake overgrowing by Sphagnum-mires in NE Poland results in pine woodlands on mineralised peat. The climate conditions in NE Poland, combined with evapotranspiration accelerated by encroaching trees, do not seem to support the development of ombrotrophic bogs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700