Organisation of the endosperm and endosperm–placenta syncytia in bladderworts (Utricularia, Lentibulariaceae) with emphasis on the microtubule arrangement
详细信息    查看全文
  • 作者:Bartosz J. P?achno (1)
    Piotr ?wi?tek (2)
    Hanna Sas-Nowosielska (3)
    Ma?gorzata Kozieradzka-Kiszkurno (4)
  • 关键词:Plant reproduction ; Embryology ; Cellular endosperm ; Haustorium ; Utricularia ; Lentibulariaceae ; Aquatic carnivorous plants
  • 刊名:Protoplasma
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:250
  • 期:4
  • 页码:863-873
  • 全文大小:990KB
  • 参考文献:1. Bajer A (1965) Behaviour of chromosomal spindle fibres in living cells. Chromosoma 16:381-90 CrossRef
    2. Bajer A (1968) Behavior and fine structure of spindle fibers during mitosis in endosperm. Chromosoma 25:249-81 CrossRef
    3. Bajer A, Allen RD (1966) Structure and organization of the living mitotic spindle of / Haemanthus endosperm. Science 151:572-74 CrossRef
    4. Bajer AS, Molè-Bajer J (1986a) Drugs with colchicine-like effects that specifically disassemble plant but not animal microtubules. Ann N Y Acad Sci 466:767-84 CrossRef
    5. Bajer AS, Molè-Bajer J (1986b) Reorganization of microtubules in endosperm cells and cell fragments of the higher plant / Haemanthus in vivo. J Cell Biol 102:263-81 CrossRef
    6. Balu?ka F, Volkmann D, Barlow PW (2004a) Eukaryotic cells and their cell bodies: cell theory revised. Ann Bot Lond 94:9-2 CrossRef
    7. Balu?ka F, Volkmann D, Barlow PW (2004b) Cell bodies in a cage. Nature 428:371 CrossRef
    8. Balu?ka F, Volkmann D, Barlow PW (2006) Cell-cell channels and their implications for cell theory. In: Balu?ka F, Volkmann D, Barlow PW (eds) Cell-cell channels. Landes Bioscience-Springer, Berlin, pp 1-8 CrossRef
    9. Beeckman T, De Rycke R, Viane R, Inze D (2000) Histological study of seed coat development in / Arabidopsis thaliana. J Plant Res 113:139-48 CrossRef
    10. Berger C, Erdelská O (1973) Ultrastructural aspects of the embryo sac of / Jasione montana L. cell walls. Caryologia 25:109-20
    11. Biliński SM, Jaglarz MK (1999) Organization and possible functions of microtubule cytoskeleton in hymenopteran nurse cells. Cell Motil Cytoskeleton 43:213-20 CrossRef
    12. Boruc J, Zhou X, Meier I (2012) Dynamics of the plant nuclear envelope and nuclear pore. Plant Physiol 158:78-6 CrossRef
    13. Bouman F (1984) The ovule. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 123-58 CrossRef
    14. Brown RC, Lemmon BE (1992) Cytoplasmic domain; a model for spatial control of cytokinesis in reproductive cells of plants. EMSA Bull 22:48-3
    15. Brown RC, Lemmon BE (2001) The cytoskeleton and spatial control of cytokinesis in the plant life cycle. Protoplasma 215:35-9 CrossRef
    16. Brown RC, Lemmon BE (2007) Developmental biology of cereal endosperm. In: Olsen O-A (ed) Endosperm plant cell monographs. Springer, Berlin, pp 1-0
    17. Brown RC, Lemmon BE (2008) Microtubules in early development of the megagametophyte of / Ginkgo biloba. J Plant Res 121:397-06 CrossRef
    18. Brown RC, Lemmon BE, Olsen O-A (1994) Endosperm development in barley: microtubule involvement in the morphogenetic pathway. Plant Cell 6:1241-252
    19. Brown RC, Lemmon BE, Nguyen H (1999) Development of endosperm in / Arabidopsis thaliana. Sex Plant Reprod 12:32-2 CrossRef
    20. Brown RC, Lemmon BE, Nguyen H (2002) The microtubule cycle during successive mitotic waves in the syncytial female gametophyte of ginkgo. J Plant Res 115:491-94 CrossRef
    21. Brown RC, Lemmon BE, Nguyen H (2003) Events during the first four rounds of mitosis establish three developmental domains in the syncytial endosperm of / Arabidopsis. Protoplasma 222:167-74 CrossRef
    22. Chytilova E, Macas J, Sliwinska E, Rafelski SM, Lambert GM, Galbraith DW (2000) Nuclear dynamics in / Arabidopsis thaliana. Mol Biol Cell 11:2733-741 CrossRef
    23. Collings DA, Carter CN, Rink JC, Scott AC, Wyatt SE, Allen NS (2000) Plant nuclei can contain extensive grooves and invaginations. Plant Cell 12:2425-439
    24. de Almeida EJ, van Poucke K, Karimi M, de Groodt R, Gheysen G, Engler G (2004) Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots. Plant J 38:12-6 CrossRef
    25. De Mey J, Lambert AM, Bajer AS, Moeremans M, De Brabander M (1982) Visualization of microtubules in interphase and mitotic plant cells of / Haemanthus endosperm with the immuno-gold staining method. Proc Natl Acad Sci USA 79:1898-902 CrossRef
    26. Dittmer TA, Stacey NJ, Sugimoto-Shirasu K, Richards EJ (2007) Little nuclei genes affecting nuclear morphology in / Arabidopsis thaliana. Plant Cell 19:2793-803 CrossRef
    27. Farooq M (1964) Studies in the Lentibulariaceae I. The embryology of / Utricularia stellaris L. var. / inflexa Clarke. Part II. Microsporangium, male gametophyte, fertilization, endosperm, embryo, and seed. Proc Natl Inst Sci India 30:280-99
    28. Fiserova J, Kiseleva E, Goldberg MW (2009) Nuclear envelope and nuclear pore complex structure and organization in tobacco BY-2 cells. Plant J 59:243-55 CrossRef
    29. Forer A, Jackson WT (1979) Actin in spindles of / Haemanthus katherinae endosperm. I. General results using various glycerination methods. J Cell Sci 37:323-47
    30. Graumann K, Evans DE (2010) Plant SUN domain proteins. Plant Signal Behav 5:154-56 CrossRef
    31. Huang BQ, Ye XL, Yeung EC, Zee SY (1998) Embryology of / Cymbidium sinense: the microtubule organization of early embryos. Ann Bot Lond 81:741-50 CrossRef
    32. Ingram GC (2010) Family life at close quarters: communication and constraint in angiosperm seed development. Protoplasma 247:195-14. doi:10.1007/s00709-010-0184-y CrossRef
    33. Jakobsen HB, Martens H, Lyshede OB (1994) Accumulation of metabolites during seed development in / Trifolium repens L. Ann Bot Lond 74:409-15 CrossRef
    34. Johri BM (1984) Embryology of angiosperms. Springer, Berlin, pp 1-2 CrossRef
    35. Kapil RN, Tiwari SC (1978) Plant embryological investigations and fluorescence microscopy: an assessment of integration. Int Rev Cytol 53:291-31 CrossRef
    36. Ketelaar T, Faivre Moskalenko C, Esseling JJ, de Ruijter NC, Grierson CS, Dogterom M, Emons AM (2002) Positioning of nuclei in / Arabidopsis root hairs: an actin-regulated process of tip growth. Plant Cell 14:2941-955 CrossRef
    37. Kozieradzka-Kiszkurno M, P?achno BJ (2012) Are there symplastic connections between the endosperm and embryo in some angiosperms?—a lesson from the Crassulaceae family. Protoplasma 249(4):1081-089. doi:10.1007/s00709-011-0352-8 CrossRef
    38. Kozieradzka-Kiszkurno M, ?wierczyńska J, Bohdanowicz J (2011) Embryogenesis in / Sedum acre L.: structural and immunocytochemical aspects of suspensor development. Protoplasma 248:775-84 CrossRef
    39. Lloyd CW, Pearce KJ, Rawlins DJ, Ridge RW, Shaw PJ (1987) Endoplasmic microtubules connect the advancing nucleus to the tip of legume root hairs, but F-actin is involved in basipetal migration. Cell Motil Cytoskeleton 8:27-6 CrossRef
    40. Molè-Bajer J, Bajer AS (1983) Action of taxol on mitosis: modification of microtubule arrangements and function of the mitotic spindle in / Haemanthus endosperm. J Cell Biol 96:527-40 CrossRef
    41. Nguyen H, Brown RC, Lemmon BE (2000) The specialized chalazal endosperm in / Arabidopsis thaliana and / Lepidium virginicum (Brassicaceae). Protoplasma 212:99-10 CrossRef
    42. Nguyen H, Brown RC, Lemmon BE (2001) Patterns of cytoskeletal organization reflect distinct developmental domains in endosperm of / Coronopus didymus (Brassicaceae). Int J Plant Sci 162:1-4 CrossRef
    43. Nguyen H, Brown RC, Lemmon BE (2002) Cytoskeletal organization of the micropylar endosperm in / Coronopus didymus L. (Brassicaceae). Protoplasma 219:210-20 CrossRef
    44. Oda Y, Fukuda H (2011) Dynamics of / Arabidopsis SUN proteins during mitosis and their involvement in nuclear shaping. Plant J 66:629-41 CrossRef
    45. Olsen O-A (2001) Endosperm development: cellularization and cell fate specification. Annu Rev Plant Physiol Plant Mol Biol 52:233-67 CrossRef
    46. Otegui M, Staehelin LA (2000) Syncytial-type cell plates: a novel kind of cell plate involved in endosperm cellularization of / Arabidopsis. Plant Cell 12:933-47
    47. P?achno BJ, ?wi?tek P (2008) Cytoarchitecture of / Utricularia nutritive tissue. Protoplasma 234:25-2 CrossRef
    48. P?achno BJ, ?wi?tek P (2010) Unusual embryo structure in viviparous / Utricularia nelumbifolia, with remarks on embryo evolution in genus / Utricularia. Protoplasma 239:69-0 CrossRef
    49. P?achno BJ, ?wi?tek P (2011) Syncytia in plants: cell fusion in endosperm-placental syncytium formation in / Utricularia (Lentibulariaceae). Protoplasma 248:425-35. doi:10.1007/s00709-010-0173-1 CrossRef
    50. P?achno BJ, ?wi?tek P, Kozieradzka-Kiszkurno M (2011) The F-actin cytoskeleton in syncytia from non-clonal progenitor cells. Protoplasma 248:623-29 CrossRef
    51. Podbilewicz B (2005) Cell fusion in WormBook: the online review of / C. / elegans. / Biology [Internet]. WormBook, Pasadena
    52. Reiser L, Fischer RL (1993) The ovule and the embryo sac. Plant Cell 5:1291-301
    53. Serpe MD, Muir AJ, Keidel AM (2001) Localization of cell wall polysaccharides in nonarticulated laticifers of / Asclepias speciosa. Protoplasma 216:215-26 CrossRef
    54. Shemer G, Podbilewicz B (2000) Fusomorphogenesis: cell fusion in organ formation. Dev Dyn 218:30-1 CrossRef
    55. Shemer G, Podbilewicz B (2003) The story of cell fusion: big lessons from little worms. Bioessays 25:672-82 CrossRef
    56. van Zanten M, Koini MA, Geyer R, Liu Y, Brambilla V, Bartels D, Koorneef M, Fransz P, Soppe WJJ (2011) Seed maturation in / Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. Proc Natl Acad Sci USA 108:20219-0224 CrossRef
    57. Vijayaraghavan MR, Prabhakar K (1984) The endosperm. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 319-76 CrossRef
    58. Vitha S, Balu?ka JJ, Volkmann D, Barlow PW (2000) Steedman’s wax for F-actin visualization. In: Staiger CJ, Balu?ka F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell function. Kluwer Academic, Dordrecht, pp 618-36
    59. Webb MC, Gunning BES (1991) The microtubular cytoskeleton during development of the zygote, proembryo and free-nuclear endosperm in / Arabidopsis thaliana (L.) Heynh. Planta 184:187-95 CrossRef
    60. Webster M, Witkin KL, Cohen-Fix O (2009) Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122:1477-486 CrossRef
    61. XuHan X, van Lammeren AAM (1994) Microtubular configurations during endosperm development in / Phaseolus vulgaris. Can J Bot 72:1489-495 CrossRef
    62. Ye XL, Zee SY, Yeung EC (1997) Suspensor development in the Nun orchid, / Phaius tankervilliae. Int J Plant Sci 158:704-12 CrossRef
    63. Zee SY, O'Brien TP (1970) Studies on the ontogeny of the pigment strand in the caryopsis of wheat. Aust J Biol 23:1153-171
    64. ?elazowska M, Biliński SM (2001) Ultrastructure and function of nurse cells in phthirapterans. Possible function of ramified nurse cell nuclei in the cytoplasm transfer. Arthropod Struct Dev 30:135-43 CrossRef
  • 作者单位:Bartosz J. P?achno (1)
    Piotr ?wi?tek (2)
    Hanna Sas-Nowosielska (3)
    Ma?gorzata Kozieradzka-Kiszkurno (4)

    1. Department of Plant Cytology and Embryology, Jagiellonian University, 52 Grodzka St., 31-044, Cracow, Poland
    2. Department of Animal Histology and Embryology, University of Silesia, 9 Bankowa St., 40-007, Katowice, Poland
    3. Department of Plant Anatomy and Cytology, University of Silesia, 28 Jagiellońska St., 40-032, Katowice, Poland
    4. Department of Plant Cytology and Embryology, University of Gdańsk, 59 Wita Stwosza St., 80-308, Gdańsk, Poland
文摘
Multinucleate cells play an important role in higher plants, especially during reproduction; however, the configurations of their cytoskeletons, which are formed as a result of mitosis without cytokinesis, have mainly been studied in coenocytes. Previous authors have proposed that in spite of their developmental origin (cell fusion or mitosis without cytokinesis), in multinucleate plant cells, radiating microtubules determine the regular spacing of individual nuclei. However, with the exception of specific syncytia induced by parasitic nematodes, there is no information about the microtubular cytoskeleton in plant heterokaryotic syncytia, i.e. when the nuclei of fused cells come from different cell pools. In this paper, we describe the arrangement of microtubules in the endosperm and special endosperm–placenta syncytia in two Utricularia species. These syncytia arise from different progenitor cells, i.e. cells of the maternal sporophytic nutritive tissue and the micropylar endosperm haustorium (both maternal and paternal genetic material). The development of the endosperm in the two species studied was very similar. We describe microtubule configurations in the three functional endosperm domains: the micropylar syncytium, the endosperm proper and the chalazal haustorium. In contrast to plant syncytia that are induced by parasitic nematodes, the syncytia of Utricularia had an extensive microtubular network. Within each syncytium, two giant nuclei, coming from endosperm cells, were surrounded by a three-dimensional cage of microtubules, which formed a huge cytoplasmic domain. At the periphery of the syncytium, where new protoplasts of the nutritive cells join the syncytium, the microtubules formed a network which surrounded small nuclei from nutritive tissue cells and were also distributed through the cytoplasm. Thus, in the Utricularia syncytium, there were different sized cytoplasmic domains, whose architecture depended on the source and size of the nuclei. The endosperm proper was isolated from maternal (ovule) tissues by a cuticle layer, so the syncytium and chalazal haustorium were the only way for nutrients to be transported from the maternal tissue towards the developing embryo.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700