Hydrogen peroxide induces vasorelaxation by enhancing 4-aminopyridine-sensitive Kv currents through S-glutathionylation
详细信息    查看全文
  • 作者:Sang Woong Park (1)
    Hyun Ju Noh (1)
    Dong Jun Sung (2)
    Jae Gon Kim (3)
    Jeong Min Kim (1)
    Shin-Young Ryu (4)
    KyeongJin Kang (5)
    Bokyung Kim (1)
    Young Min Bae (1)
    Hana Cho (3)
  • 关键词:H2O2 ; Kv channel ; Mesenteric artery ; S ; glutathionylation ; Oxidative stress
  • 刊名:Pflügers Archiv - European Journal of Physiology
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:467
  • 期:2
  • 页码:285-297
  • 全文大小:1,622 KB
  • 参考文献:1. Aracena-Parks P, Goonasekera SA, Gilman CP, Dirksen RT, Hidalgo C, Hamilton SL (2006) Identification of cysteines involved in / S-nitrosylation, / S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1. J Biol Chem 281(52):40354鈥?0368. doi:10.1074/jbc.M600876200 CrossRef
    2. Archer SL, Wu XC, Thebaud B, Moudgil R, Hashimoto K, Michelakis ED (2004) O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide. Biol Chem 385(3鈥?):205鈥?16
    3. Bae YM, Kim A, Kim J, Park SW, Kim TK, Lee YR, Kim B, Cho SI (2006) Serotonin depolarizes the membrane potential in rat mesenteric artery myocytes by decreasing voltage-gated K+ currents. Biochem Biophys Res Commun 347(2):468鈥?76 CrossRef
    4. Bae YM, Park MK, Lee SH, Ho WK, Earm YE (1999) Contribution of Ca2+-activated K+ channels and non-selective cation channels to membrane potential of pulmonary arterial smooth muscle cells of the rabbit. J Physiol 514(Pt 3):747鈥?58 CrossRef
    5. Barlow RS, White RE (1998) Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity. Am J Physiol 275(4 Pt 2):H1283鈥揌1289
    6. Beny JL, von der Weid PY (1991) Hydrogen peroxide: an endogenous smooth muscle cell hyperpolarizing factor. Biochem Biophys Res Commun 176(1):378鈥?84 CrossRef
    7. Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282(2):1183鈥?192 CrossRef
    8. Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta 1758(8):994鈥?003 CrossRef
    9. Bimboese P, Gibson CJ, Schmidt S, Xiang W, Ehrlich BE (2011) Isoform-specific regulation of the inositol 1,4,5-trisphosphate receptor by / O-linked glycosylation. J Biol Chem 286(18):15688鈥?5697. doi:10.1074/jbc.M110.206482 CrossRef
    10. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134(3):707鈥?16
    11. Burke TM, Wolin MS (1987) Hydrogen peroxide elicits pulmonary arterial relaxation and guanylate cyclase activation. Am J Physiol 252(4 Pt 2):H721鈥揌732
    12. Caouette D, Dongmo C, Berube J, Fournier D, Daleau P (2003) Hydrogen peroxide modulates the Kv1.5 channel expressed in a mammalian cell line. Naunyn Schmiedeberg鈥檚 Arch Pharmacol 368(6):479鈥?86 CrossRef
    13. Chandrasekhar KD, Lvov A, Terrenoire C, Gao GY, Kass RS, Kobertz WR (2011) / O-glycosylation of the cardiac I(Ks) complex. J Physiol 589(Pt 15):3721鈥?730. doi:10.1113/jphysiol.2011.211284 CrossRef
    14. Clark SG, Fuchs LC (1997) Role of nitric oxide and Ca++-dependent K+ channels in mediating heterogeneous microvascular responses to acetylcholine in different vascular beds. J Pharmacol Exp Ther 282(3):1473鈥?479
    15. Cohen G (1994) Enzymatic/nonenzymatic sources of oxyradicals and regulation of antioxidant defenses. Ann N Y Acad Sci 738:8鈥?4 CrossRef
    16. Coleman HA, Tare M, Parkington HC (2004) Endothelial potassium channels, endothelium-dependent hyperpolarization and the regulation of vascular tone in health and disease. Clin Exp Pharmacol Physiol 31(9):641鈥?49 CrossRef
    17. Cruzado MC, Risler NR, Miatello RM, Yao G, Schiffrin EL, Touyz RM (2005) Vascular smooth muscle cell NAD(P)H oxidase activity during the development of hypertension: effect of angiotensin II and role of insulin-like growth factor-1 receptor transactivation. Am J Hypertens 18(1):81鈥?7. doi:10.1016/j.amjhyper.2004.09.001 CrossRef
    18. Cseko C, Bagi Z, Koller A (2004) Biphasic effect of hydrogen peroxide on skeletal muscle arteriolar tone via activation of endothelial and smooth muscle signaling pathways. J Appl Physiol 97(3):1130鈥?137. doi:10.1152/japplphysiol.00106.2004 CrossRef
    19. Dai S, Hall DD, Hell JW (2009) Supramolecular assemblies and localized regulation of voltage-gated ion channels. Physiol Rev 89(2):411鈥?52. doi:10.1152/physrev.00029.2007 CrossRef
    20. Dalle-Donne I, Milzani A, Gagliano N, Colombo R, Giustarini D, Rossi R (2008) Molecular mechanisms and potential clinical significance of / S-glutathionylation. Antioxid Redox Signal 10(3):445鈥?73 CrossRef
    21. Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A (2009) Protein / S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci 34(2):85鈥?6. doi:10.1016/j.tibs.2008.11.002 CrossRef
    22. Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2007) / S-glutathionylation in protein redox regulation. Free Radic Biol Med 43(6):883鈥?98. doi:10.1016/j.freeradbiomed.2007.06.014 CrossRef
    23. Dugan LL, Sensi SL, Canzoniero LM, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to / N-methyl-D-aspartate. J Neurosci 15(10):6377鈥?388
    24. Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH (1998) K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396(6708):269鈥?72 CrossRef
    25. Finkel T (1998) Oxygen radicals and signaling. Curr Opin Cell Biol 10(2):248鈥?53 CrossRef
    26. Firth AL, Remillard CV, Platoshyn O, Fantozzi I, Ko EA, Yuan JX (2011) Functional ion channels in human pulmonary artery smooth muscle cells: voltage-dependent cation channels. Pulm Cir 1(1):48鈥?1. doi:10.4103/2045-8932.78103 CrossRef
    27. Gao YJ, Lee RM (2005) Hydrogen peroxide is an endothelium-dependent contracting factor in rat renal artery. Br J Pharmacol 146(8):1061鈥?068 CrossRef
    28. Garcia-Redondo AB, Briones AM, Beltran AE, Alonso MJ, Simonsen U, Salaices M (2009) Hypertension increases contractile responses to hydrogen peroxide in resistance arteries through increased thromboxane A2, Ca2+, and superoxide anion levels. J Pharmacol Exp Ther 328(1):19鈥?7. doi:10.1124/jpet.108.144295 CrossRef
    29. Hatoum OA, Binion DG, Miura H, Telford G, Otterson MF, Gutterman DD (2005) Role of hydrogen peroxide in ACh-induced dilation of human submucosal intestinal microvessels. Am J Physiol Heart Circ Physiol 288(1):H48鈥揌54. doi:10.1152/ajpheart.00663.2004 CrossRef
    30. Heinle H (1984) Vasoconstriction of carotid artery induced by hydroperoxides. Arch Int Physiol Biochim 92(4):267鈥?71 CrossRef
    31. Henzler T, Steudle E (2000) Transport and metabolic degradation of hydrogen peroxide in / Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J Exp Bot 51(353):2053鈥?066 CrossRef
    32. Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87(12):1095鈥?102 CrossRef
    33. Kim SH, Bae YM, Sung DJ, Park SW, Woo NS, Kim B, Cho SI (2007) Ketamine blocks voltage-gated K(+) channels and causes membrane depolarization in rat mesenteric artery myocytes. Pflugers Arch 454(6):891鈥?02. doi:10.1007/s00424-007-0240-4 CrossRef
    34. Kozlowska H, Baranowska M, Gromotowicz A, Malinowska B (2007) Endothelium-derived hyperpolarizing factor (EDHF): potential involvement in the physiology and pathology of blood vessels. Postepy Hig Med Dosw 61:555鈥?64 (Online)
    35. Lacza Z, Puskar M, Kis B, Perciaccante JV, Miller AW, Busija DW (2002) Hydrogen peroxide acts as an EDHF in the piglet pial vasculature in response to bradykinin. Am J Physiol Heart Circ Physiol 283(1):H406鈥揌411
    36. Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80(5):780鈥?87 CrossRef
    37. Liu Y, Gutterman DD (2002) The coronary circulation in diabetes: influence of reactive oxygen species on K+ channel-mediated vasodilation. Vasc Pharmacol 38(1):43鈥?9 CrossRef
    38. Lucchesi PA, Belmadani S, Matrougui K (2005) Hydrogen peroxide acts as both vasodilator and vasoconstrictor in the control of perfused mouse mesenteric resistance arteries. J Hypertens 23(3):571鈥?79 CrossRef
    39. Ma HP (2011) Hydrogen peroxide stimulates the epithelial sodium channel through a phosphatidylinositide 3-kinase-dependent pathway. J Biol Chem 286(37):32444鈥?2453. doi:10.1074/jbc.M111.254102 CrossRef
    40. Marvar PJ, Hammer LW, Boegehold MA (2007) Hydrogen peroxide-dependent arteriolar dilation in contracting muscle of rats fed normal and high salt diets. Microcirculation 14(8):779鈥?91. doi:10.1080/10739680701444057 CrossRef
    41. Matoba T, Shimokawa H, Kubota H, Morikawa K, Fujiki T, Kunihiro I, Mukai Y, Hirakawa Y, Takeshita A (2002) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in human mesenteric arteries. Biochem Biophys Res Commun 290(3):909鈥?13 CrossRef
    42. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 106(12):1521鈥?530 CrossRef
    43. Michelakis ED, Rebeyka I, Wu X, Nsair A, Thebaud B, Hashimoto K, Dyck JR, Haromy A, Harry G, Barr A, Archer SL (2002) O2 sensing in the human ductus arteriosus: regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Circ Res 91(6):478鈥?86 CrossRef
    44. Michelakis ED, Thebaud B, Weir EK, Archer SL (2004) Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells. J Mol Cell Cardiol 37(6):1119鈥?136
    45. Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268(4 Pt 1):C799鈥揅822
    46. Nistico R, Piccirilli S, Cucchiaroni ML, Armogida M, Guatteo E, Giampa C, Fusco FR, Bernardi G, Nistico G, Mercuri NB (2008) Neuroprotective effect of hydrogen peroxide on an in vitro model of brain ischaemia. Br J Pharmacol 153(5):1022鈥?029. doi:10.1038/sj.bjp.0707587 CrossRef
    47. Nowicki PT, Flavahan S, Hassanain H, Mitra S, Holland S, Goldschmidt-Clermont PJ, Flavahan NA (2001) Redox signaling of the arteriolar myogenic response. Circ Res 89(2):114鈥?16 CrossRef
    48. Palen DI, Ouhtit A, Belmadani S, Lucchesi PA, Matrougui K (2006) Hydrogen peroxide acts as relaxing factor in human vascular smooth muscle cells independent of map-kinase and nitric oxide. Front Biosci 11:2526鈥?534 CrossRef
    49. Park WS, Son YK, Ko EA, Ko JH, Lee HA, Park KS, Earm YE (2005) The protein kinase C inhibitor, bisindolylmaleimide (I), inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells. Life Sci 77(5):512鈥?27. doi:10.1016/j.lfs.2004.10.073 CrossRef
    50. Pascual JM, Shieh CC, Kirsch GE, Brown AM (1997) Contribution of the NH2 terminus of Kv2.1 to channel activation. Am J Physiol 273(6 Pt 1):C1849鈥揅1858
    51. Patel AJ, Lazdunski M, Honore E (1997) Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes. EMBO J 16(22):6615鈥?625. doi:10.1093/emboj/16.22.6615 CrossRef
    52. Quyyumi AA, Ozkor M (2006) Vasodilation by hyperpolarization: beyond NO. Hypertension 48(6):1023鈥?025 CrossRef
    53. Rengifo J, Gibson CJ, Winkler E, Collin T, Ehrlich BE (2007) Regulation of the inositol 1,4,5-trisphosphate receptor type I by / O-GlcNAc glycosylation. J Neurosci 27(50):13813鈥?3821. doi:10.1523/jneurosci.2069-07.2007 CrossRef
    54. Rogers PA, Chilian WM, Bratz IN, Bryan RM Jr, Dick GM (2007) H2O2 activates redox- and 4-aminopyridine-sensitive Kv channels in coronary vascular smooth muscle. Am J Physiol Heart Circ Physiol 292(3):H1404鈥揌1411 CrossRef
    55. Rogers PA, Dick GM, Knudson JD, Focardi M, Bratz IN, Swafford AN Jr, Saitoh S, Tune JD, Chilian WM (2006) H2O2-induced redox-sensitive coronary vasodilation is mediated by 4-aminopyridine-sensitive K+ channels. Am J Physiol Heart Circ Physiol 291(5):H2473鈥揌2482 CrossRef
    56. Rougier JS, Albesa M, Abriel H (2010) Ubiquitylation and SUMOylation of cardiac ion channels. J Cardiovasc Pharmacol 56(1):22鈥?8. doi:10.1097/FJC.0b013e3181daaff9 CrossRef
    57. Saitoh S, Zhang C, Tune JD, Potter B, Kiyooka T, Rogers PA, Knudson JD, Dick GM, Swafford A, Chilian WM (2006) Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26(12):2614鈥?621 CrossRef
    58. Sato A, Sakuma I, Gutterman DD (2003) Mechanism of dilation to reactive oxygen species in human coronary arterioles. Am J Physiol Heart Circ Physiol 285(6):H2345鈥揌2354. doi:10.1152/ajpheart.00458.2003
    59. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191鈥?212 CrossRef
    60. Shi Y, Chen X, Wu Z, Shi W, Yang Y, Cui N, Jiang C, Harrison RW (2008) cAMP-dependent protein kinase phosphorylation produces interdomain movement in SUR2B leading to activation of the vascular KATP channel. J Biol Chem 283(12):7523鈥?530. doi:10.1074/jbc.M709941200 CrossRef
    61. Shi W, Cui N, Shi Y, Zhang X, Yang Y, Jiang C (2007) Arginine vasopressin inhibits Kir6.1/SUR2B channel and constricts the mesenteric artery via V1a receptor and protein kinase C. Am J Physiol Regul Integr Comp Physiol 293(1):R191鈥揜199. doi:10.1152/ajpregu.00047.2007 CrossRef
    62. Shi Y, Wu Z, Cui N, Shi W, Yang Y, Zhang X, Rojas A, Ha BT, Jiang C (2007) PKA phosphorylation of SUR2B subunit underscores vascular KATP channel activation by beta-adrenergic receptors. Am J Physiol Regul Integr Comp Physiol 293(3):R1205鈥揜1214. doi:10.1152/ajpregu.00337.2007 CrossRef
    63. Shi WW, Yang Y, Shi Y, Jiang C (2012) K(ATP) channel action in vascular tone regulation: from genetics to diseases. Sheng Li Xue Bao 64(1):1鈥?3
    64. Sobey CG (2001) Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol 21(1):28鈥?8 CrossRef
    65. Somers MJ, Mavromatis K, Galis ZS, Harrison DG (2000) Vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetate-salt. Circulation 101(14):1722鈥?728 CrossRef
    66. Sung DJ, Noh HJ, Kim JG, Park SW, Kim B, Cho H, Bae YM (2013) Serotonin contracts the rat mesenteric artery by inhibiting 4-aminopyridine-sensitive Kv channels via the 5-HT2A receptor and Src tyrosine kinase. Exp Mol Med 45:e67. doi:10.1038/emm.2013.116 CrossRef
    67. Suvorava T, Lauer N, Kumpf S, Jacob R, Meyer W, Kojda G (2005) Endogenous vascular hydrogen peroxide regulates arteriolar tension in vivo. Circulation 112(16):2487鈥?495. doi:10.1161/circulationaha.105.543157 CrossRef
    68. Suzuki YJ, Cleemann L, Abernethy DR, Morad M (1998) Glutathione is a cofactor for H2O2-mediated stimulation of Ca2+-induced Ca2+ release in cardiac myocytes. Free Radic Biol Med 24(2):318鈥?25 CrossRef
    69. Takaki A, Morikawa K, Murayama Y, Yamagishi H, Hosoya M, Ohashi J, Shimokawa H (2008) Roles of endothelial oxidases in endothelium-derived hyperpolarizing factor responses in mice. J Cardiovasc Pharmacol 52(6):510鈥?17 CrossRef
    70. Takaki A, Morikawa K, Tsutsui M, Murayama Y, Tekes E, Yamagishi H, Ohashi J, Yada T, Yanagihara N, Shimokawa H (2008) Crucial role of nitric oxide synthases system in endothelium-dependent hyperpolarization in mice. J Exp Med 205(9):2053鈥?063 CrossRef
    71. Tang H, Viola HM, Filipovska A, Hool LC (2011) Ca(v)1.2 calcium channel is glutathionylated during oxidative stress in guinea pig and ischemic human heart. Free Radic Biol Med 51(8):1501鈥?511 CrossRef
    72. Thakali K, Davenport L, Fink GD, Watts SW (2006) Pleiotropic effects of hydrogen peroxide in arteries and veins from normotensive and hypertensive rats. Hypertension 47(3):482鈥?87 CrossRef
    73. Thomas G, Ramwell P (1986) Induction of vascular relaxation by hydroperoxides. Biochem Biophys Res Commun 139(1):102鈥?08 CrossRef
    74. Wei EP, Kontos HA, Beckman JS (1996) Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. Am J Physiol 271(3 Pt 2):H1262鈥揌1266
    75. Xu C, Lu Y, Tang G, Wang R (1999) Expression of voltage-dependent K(+) channel genes in mesenteric artery smooth muscle cells. Am J Physiol 277(5 Pt 1):G1055鈥揋1063
    76. Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Goto M, Ogasawara Y, Kajiya F (2003) Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation 107(7):1040鈥?045 CrossRef
    77. Yang Y, Shi W, Chen X, Cui N, Konduru AS, Shi Y, Trower TC, Zhang S, Jiang C (2011) Molecular basis and structural insight of vascular K(ATP) channel gating by / S-glutathionylation. J Biol Chem 286(11):9298鈥?307 CrossRef
    78. Yang Y, Shi W, Cui N, Wu Z, Jiang C (2010) Oxidative stress inhibits vascular K(ATP) channels by / S-glutathionylation. J Biol Chem 285(49):38641鈥?8648 CrossRef
    79. Yang Y, Shi Y, Guo S, Zhang S, Cui N, Shi W, Zhu D, Jiang C (2008) PKA-dependent activation of the vascular smooth muscle isoform of KATP channels by vasoactive intestinal polypeptide and its effect on relaxation of the mesenteric resistance artery. Biochim Biophys Acta 1778(1):88鈥?6. doi:10.1016/j.bbamem.2007.08.030 CrossRef
    80. Yogi A, Callera GE, Hipolito UV, Silva CR, Touyz RM, Tirapelli CR (2010) Ethanol-induced vasoconstriction is mediated via redox-sensitive cyclo-oxygenase-dependent mechanisms. Clin Sci (Lond) 118(11):657鈥?68 CrossRef
    81. Zhang DX, Borbouse L, Gebremedhin D, Mendoza SA, Zinkevich NS, Li R, Gutterman DD (2012) H2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance Ca2+-activated K+ channel activation. Circ Res 110(3):471鈥?80 CrossRef
    82. Zimmermann AK, Loucks FA, Schroeder EK, Bouchard RJ, Tyler KL, Linseman DA (2007) Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for Bcl-2 antioxidant function at mitochondria. J Biol Chem 282(40):29296鈥?9304 CrossRef
  • 作者单位:Sang Woong Park (1)
    Hyun Ju Noh (1)
    Dong Jun Sung (2)
    Jae Gon Kim (3)
    Jeong Min Kim (1)
    Shin-Young Ryu (4)
    KyeongJin Kang (5)
    Bokyung Kim (1)
    Young Min Bae (1)
    Hana Cho (3)

    1. Department of Physiology, Institute of Functional Genomics, Research Institute of Medical Science, School of Medicine, Konkuk University, Choongju, 380-701, Korea
    2. Division of Sport Science, College of Science and Technology, Konkuk University, Choongju, Korea
    3. Department of Physiology and Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Suwon, Korea
    4. Department of Physiology and Biomembrane Plasticity Research Center, College of Medicine, Seoul National University, Seoul, Korea
    5. Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Korea
  • 刊物主题:Human Physiology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-2013
文摘
Hydrogen peroxide (H2O2) is an endothelium-derived hyperpolarizing factor. Since opposing vasoactive effects have been reported for H2O2 depending on the vascular bed and experimental conditions, this study was performed to assess whether H2O2 acts as a vasodilator in the rat mesenteric artery and, if so, to determine the underlying mechanisms. H2O2 elicited concentration-dependent relaxation in mesenteric arteries precontracted with norepinephrine. The vasodilatory effect of H2O2 was reversed by treatment with dithiothreitol. H2O2-elicited vasodilation was significantly reduced by blocking 4-aminopyridine (4-AP)-sensitive Kv channels, but it was resistant to blockers of big-conductance Ca2+-activated K+ channels and inward rectifier K+ channels. A patch-clamp study in mesenteric arterial smooth muscle cells (MASMCs) showed that H2O2 increased Kv currents in a concentration-dependent manner. H2O2 speeded up Kv channel activation and shifted steady state activation to hyperpolarizing potentials. Similar channel activation was seen with oxidized glutathione (GSSG). The H2O2-mediated channel activation was prevented by glutathione reductase. Consistent with S-glutathionylation, streptavidin pull-down assays with biotinylated glutathione ethyl ester showed incorporation of glutathione (GSH) in the Kv channel proteins in the presence of H2O2. Interestingly, conditions of increased oxidative stress within MASMCs impaired the capacity of H2O2 to stimulate Kv channels. Not only was the H2O2 stimulatory effect much weaker, but the inhibitory effect of H2O2 was unmasked. These data suggest that H2O2 activates 4-AP-sensitive Kv channels, possibly through S-glutathionylation, which elicits smooth muscle relaxation in rat mesenteric arteries. Furthermore, our results support the idea that the basal redox status of MASMCs determines the response of Kv currents to H2O2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700