Quantum dot effects upon the interaction between porphyrins and phospholipids in cell membrane models
详细信息    查看全文
  • 作者:Gustavo G. Parra ; Galina Borissevitch ; Iouri Borissevitch…
  • 关键词:Porphyrin ; Quantum dots ; Langmuir monolayers ; Langmuir ; Blodgett films
  • 刊名:European Biophysics Journal
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:45
  • 期:3
  • 页码:219-227
  • 全文大小:1,688 KB
  • 参考文献:Allison RR, Downie GH, Cuenca R et al (2004) Photosensitizers in clinical PDT. Photodiagn Photodyn Ther 1:27–42. doi:10.​1016/​S1572-1000(04)00007-9 CrossRef
    An L, Chao K, Zeng Q et al (2013) Energy transfer from CdSe quantum dots to porphyrin via two-photon excitation. J Nanosci Nanotechnol 13:1368–1371. doi:10.​1166/​jnn.​2013.​6031 CrossRef PubMed
    Azzazy HME, Mansour MMH, Kazmierczak SC (2007) From diagnostics to therapy: prospects of quantum dots. Clin Biochem 40:917–927. doi:10.​1016/​j.​clinbiochem.​2007.​05.​018 CrossRef PubMed
    Borissevitch GP, Tabak M, Borissevitch IE, Oliveira ON (1996) Interaction of dipyridamole derivatives with lipids in mixed floating Langmuir monolayers. Colloids Surf B Biointerfaces 7:69–81. doi:10.​1016/​0927-7765(96)01284-2 CrossRef
    Borissevitch IE, Parra GG, Zagidullin VE et al (2013) Cooperative effects in CdSe/ZnS-PEGOH quantum dot luminescence quenching by a water soluble porphyrin. J Lumin 134:83–87. doi:10.​1016/​j.​jlumin.​2012.​09.​008 CrossRef
    Brown SB, Brown EA, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 5:497–508. doi:10.​1016/​S1470-2045(04)01529-3 CrossRef PubMed
    Buhbut S, Itzhakov S, Tauber E et al (2010) Built-in quantum dot antennas in dye-sensitized solar cells. ACS Nano 4:1293–1298. doi:10.​1021/​nn100021b CrossRef PubMed
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. doi:10.​1021/​cr030063a CrossRef PubMed
    Cavalcanti LP, Konovalov O, Torriani IL (2006) Lipid model membranes for drug interaction study. Eur Biophys J 35:431–438. doi:10.​1007/​s00249-006-0050-1 CrossRef PubMed
    Chuang CH, Burda C (2012) Contribution of femtosecond laser spectroscopy to the development of advanced optoelectronic nanomaterials. J Phys Chem Lett 3:1921–1927. doi:10.​1021/​jz300299r CrossRef PubMed
    Costas-Mora I, Romero V, Lavilla I, Bendicho C (2014) An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis. TrAC Trends Anal Chem 57:64–72. doi:10.​1016/​j.​trac.​2014.​02.​004 CrossRef
    Crawford NF, Leblanc RM (2014) Serum albumin in 2D: a Langmuir monolayer approach. Adv Colloid Interface Sci 207:131–138. doi:10.​1016/​j.​cis.​2013.​10.​021 CrossRef PubMed
    Dabbousi BO, Rodriguez-Viejo J, Mikulec FV et al (1997) (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475. doi:10.​1021/​jp971091y CrossRef
    Dayal S, Królicki R, Lou Y et al (2006) Femtosecond time-resolved energy transfer from CdSe nanoparticles to phthalocyanines. Appl Phys B Lasers Opt 84:309–315. doi:10.​1007/​s00340-006-2293-z CrossRef
    De Sousa Neto D, Tabak M (2012) Interaction of the meso-tetrakis (4-N-methylpyridyl) porphyrin with gel and liquid state phospholipid vesicles. J Colloid Interface Sci 381:73–82. doi:10.​1016/​j.​jcis.​2012.​05.​041 CrossRef PubMed
    Delehanty JB, Mattoussi H, Medintz IL (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393:1091–1105. doi:10.​1007/​s00216-008-2410-4 CrossRef PubMed
    Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360. doi:10.​1038/​nrd1088 CrossRef PubMed
    Frasco MF, Chaniotakis N (2010) Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Anal Bioanal Chem 396:229–240. doi:10.​1007/​s00216-009-3033-0 CrossRef PubMed
    Gonçalves PJ, De Boni L, Neto NMB et al (2005) Effect of protonation on the photophysical properties of meso-tetra(sulfonatophenyl) porphyrin. Chem Phys Lett 407:236–241. doi:10.​1016/​j.​cplett.​2005.​03.​100 CrossRef
    Gromova YA, Orlova AO, Maslov VG et al (2013) Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes. Nanoscale Res Lett 8:452. doi:10.​1186/​1556-276X-8-452 CrossRef PubMed PubMedCentral
    Ji X, Peng F, Zhong Y et al (2014) Fluorescent quantum dots: synthesis, biomedical optical imaging, and biosafety assessment. Colloids Surf B Biointerfaces 124:132–139. doi:10.​1016/​j.​colsurfb.​2014.​08.​036 CrossRef PubMed
    Kalyanasundaram K (1984) Photochemistry of water-soluble porphyrins: comparative study of isomeric tetrapyridyl-and tetrakis (N-methylpyridiniumyl) porphyrins. Inorg Chem 2314:2453–2459. doi:10.​1021/​ic00184a019 CrossRef
    Kepczyński M, Ehrenberg B (2002) Interaction of dicarboxylic metalloporphyrins with liposomes. The effect of pH on membrane binding revisited. Photochem Photobiol 76:486–492. doi:10.​1562/​0031-8655(2002)0760486IODMWL2.​0.​CO2 CrossRef PubMed
    Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanopartides. Small 4:26–49. doi:10.​1002/​smll.​200700595 CrossRef PubMed
    Liu Z, Qin H, Xiao C et al (1995) Specific binding of avidin to biotin containing lipid lamella surfaces studied with monolayers and liposomes. Eur Biophys J 24:31–38. doi:10.​1007/​BF00216828 CrossRef PubMed
    Loss D, DiVincenzo DP (1997) Quantum computation with quantum dots. Phys Rev A 57:12. doi:10.​1103/​PhysRevA.​57.​120
    Makky A, Michel JP, Maillard P, Rosilio V (2011) Biomimetic liposomes and planar supported bilayers for the assessment of glycodendrimeric porphyrins interaction with an immobilized lectin. Biochim Biophys Acta: Biomembr 1808:656–666. doi:10.​1016/​j.​bbamem.​2010.​11.​028 CrossRef
    Martin MT, Möbius D (1996) Enhanced binding of porphyrin by a laterally organized monolayer. Thin Solid Films 284–285:663–666. doi:10.​1016/​S0040-6090(95)08416-9 CrossRef
    Martín MT, Prieto I, Camacho L, Möbius D (1996) Partial stacking of a water-soluble porphyrin in complex monolayers with insoluble lipid. Langmuir 12:6554–6560. doi:10.​1021/​la960695a CrossRef
    Mashford B, Stevenson M, Popovic Z (2013) High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat Photonics 7:407–412. doi:10.​1038/​nphoton.​2013.​70 CrossRef
    Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544. doi:10.​1126/​science.​1104274 CrossRef PubMed PubMedCentral
    Oliveira ON Jr (1992) Langmuir-Blodgett films–properties and possible applications. Braz J Phys 22:60–69. doi:10.​1021/​la901601z
    Pavinatto A, Souza AL, Delezuk JAM et al (2014) Interaction of O-acylated chitosans with biomembrane models: probing the effects from hydrophobic interactions and hydrogen bonding. Colloids Surf B Biointerfaces 114:53–59. doi:10.​1016/​j.​colsurfb.​2013.​09.​034 CrossRef PubMed
    Ramos AP, Pavani C, Iamamoto Y, Zaniquelli MED (2010) Porphyrin-phospholipid interaction and ring metallation depending on the phospholipid polar head type. J Colloid Interface Sci 350:148–154. doi:10.​1016/​j.​jcis.​2010.​06.​021 CrossRef PubMed
    Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91:159–165. doi:10.​1093/​toxsci/​kfj122 CrossRef PubMed
    Shi L, Hernandez B, Selke M (2006) Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites. J Am Chem Soc 128:6278–6279. doi:10.​1021/​ja057959c CrossRef PubMed PubMedCentral
    Singh S, Chakraborty A, Singh V et al (2015) DNA mediated assembly of quantum dot–protoporphyrin IX FRET probes and the effect of FRET efficiency on ROS generation. Phys Chem Chem Phys 17:5973–5981. doi:10.​1039/​C4CP05306K CrossRef PubMed
    Tovani CB, De Souza JFV, Cavallini TDS et al (2013) Comparison between cucurbiturils and β-cyclodextrin interactions with cholesterol molecules present in Langmuir monolayers used as a biomembrane model. Colloids Surf B Biointerfaces 111:398–406. doi:10.​1016/​j.​colsurfb.​2013.​05.​006 CrossRef PubMed
    Wang S, Harris E, Shi J et al (2010) Electrogenerated chemiluminescence determination of C-reactive protein with carboxyl CdSe/ZnS core/shell quantum dots. Phys Chem Chem Phys 12:10073–10080. doi:10.​1039/​c0cp00545b CrossRef PubMed
    Yu WW, Chang E, Drezek R, Colvin VL (2006) Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 348:781–786. doi:10.​1016/​j.​bbrc.​2006.​07.​160 CrossRef PubMed
    Zaitsev SY, Shaposhnikov MN, Solovyeva DO et al (2013) Novel precursors of fluorescent dyes. 1. Interaction of the dyes with model phospholipid in monolayers. Cell Biochem Biophys 67:1365–1370. doi:10.​1007/​s12013-013-9668-7 CrossRef PubMed
    Zhang Y (2011) Surface functionalization of quantum dots for biotechnological applications. Adv Colloid Interface Sci 215:28–45. doi:10.​1016/​j.​cis.​2014.​11.​004
  • 作者单位:Gustavo G. Parra (1) (4)
    Galina Borissevitch (2)
    Iouri Borissevitch (1)
    Ana P. Ramos (3)

    1. Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
    4. Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106-7078, USA
    2. Estácio UNISEB- Centro Universitário, Ribeirão Preto, São Paulo, 14096-160, Brazil
    3. Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Biophysics and Biomedical Physics
    Cell Biology
    Biochemistry
    Plant Physiology
    Animal Physiology
    Neurobiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1017
文摘
This study employed surface pressure isotherms and spectroscopic techniques to investigate the effect of quantum dots on the interaction between porphyrins and phospholipids using Langmuir monolayers and Langmuir-Blodgett films formed from negatively charged DMPA (the sodium salt of dimyristoyl-sn-glycero-phosphatidyl acid) and zwitterionic DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) as cell membrane models in the presence of 5,10,15,20-tetrakis(4-N-tetradecyl-pyridyl) porphyrin (TMPyP), 5,10,15,20-tetrakis(p-sulfonato-phenyl) porphyrin (TPPS4) and PEG-coated CdSe/ZnS quantum dots (QD). The porphyrins present at the monolayer subphase affected the organization of the lipids at the air/liquid interface, as shown by the changes in the surface pressure-surface area isotherms. QDs enhanced the interaction of TMPyP with DMPA, improving their transference from the liquid monolayers to solid supports. A higher amount of TMPyP was transferred to DMPA-Langmuir-Blodgett films when the QDs were present in the subphase as evidenced by the UV-Vis data. For DPPC the surface effects due to the presence of QDs are less evident.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700