Emerging importance of oxidative stress in regulating striated muscle elasticity
详细信息    查看全文
  • 作者:Lisa Beckendorf (1)
    Wolfgang A. Linke (1)

    1. Department of Cardiovascular Physiology
    ; Institute of Physiology ; Ruhr University Bochum ; MA 3/56 ; 44780 ; Bochum ; Germany
  • 关键词:Oxidative modification ; Myofilaments ; Sarcomere proteins ; Titin ; Passive tension ; Diastolic stiffness
  • 刊名:Journal of Muscle Research and Cell Motility
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:36
  • 期:1
  • 页码:25-36
  • 全文大小:964 KB
  • 参考文献:1. Alegre-Cebollada, J, Kosuri, P, Giganti, D, Eckels, E, Rivas-Pardo, JA, Hamdani, N, Warren, CM, Solaro, RJ, Linke, WA, Fern谩ndez, JM (2014) S-glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding. Cell 156: pp. 1235-1246
    2. Ali, MA, Cho, WJ, Hudson, B, Kassiri, Z, Granzier, H, Schulz, R (2010) Titin is a target of matrix metalloproteinase-2: implications in myocardial ischemia/reperfusion injury. Circulation 122: pp. 2039-2047
    3. Allen, DG, Lamb, GD, Westerblad, H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88: pp. 287-332
    4. Andrade, FH, Reid, MB, Westerblad, H (2001) Contractile response of skeletal muscle to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redox-modulation. FASEB J 15: pp. 309-311
    5. Arcaro, A, Lembo, G, Tocchetti, CG (2014) Nitroxyl (HNO) for treatment of acute heart failure. Curr Heart Fail Rep 11: pp. 227-235
    6. Avner, BS, Shioura, KM, Scruggs, SB, Grachoff, M, Geenen, DL, Helseth, DL, Farjah, M, Goldspink, PH, Solaro, RJ (2012) Myocardial infarction in mice alters sarcomeric function via post-translational protein modification. Mol Cell Biochem 363: pp. 203-215
    7. Baldus, S, M眉llerleile, K, Chumley, P (2006) Inhibition of xanthine oxidase improves myocardial contractility in patients with ischemic cardiomyopathy. Free Radic Biol Med 41: pp. 1282-1288
    8. Balogh, A, Santer, D, P谩sztor, ET (2014) Myofilament protein carbonylation contributes to the contractile dysfunction in the infarcted LV region of mouse hearts. Cardiovasc Res 101: pp. 108-119
    9. Bang, ML, Centner, T, Fornoff, F (2001) The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89: pp. 1065-1072
    10. Barta, J, T贸th, A, Edes, I, Vaszily, M, Papp, JG, Varr贸, A, Papp, Z (2005) Calpain-1-sensitive myofibrillar proteins of the human myocardium. Mol Cell Biochem 278: pp. 1-8
    11. Bishu, K, Hamdani, N, Mohammed, SF (2011) Sildenafil and B-type natriuretic peptide acutely phosphorylate titin and improve diastolic distensibility in vivo. Circulation 124: pp. 2882-2891
    12. Borb茅ly, A, Falcao-Pires, I, Heerebeek, L, Hamdani, N, Edes, I, Gavina, C, Leite-Moreira, AF, Bronzwaer, JG, Papp, Z, Velden, J, Stienen, GJ, Paulus, WJ (2009) Hypophosphorylation of the stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ Res 104: pp. 780-786
    13. Brennan, JP, Miller, JI, Fuller, W, Wait, R, Begum, S, Dunn, MJ, Eaton, P (2006) The utility of N, N-biotinyl glutathione disulfide in the study of protein S-glutathiolation. Mol Cell Proteomics 5: pp. 215-225
    14. Bullard, B, Ferguson, C, Minajeva, A (2004) Association of the chaperone 伪B-crystallin with titin in heart muscle. J Biol Chem 279: pp. 7917-7924
    15. Canton, M, Neverova, I, Menab貌, R, Eyk, J, Lisa, F (2004) Evidence of myofibrillar protein oxidation induced by postischemic reperfusion in isolated rat hearts. Am J Physiol Heart Circ Physiol 286: pp. 870-877
    16. Canton, M, Skyschally, A, Menab貌, R, Boengler, K, Gres, P, Schulz, R, Haude, M, Erbel, R, Lisa, F, Heusch, G (2006) Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. Eur Heart J 27: pp. 875-881
    17. Canton, M, Menazza, S, Sheeran, FL, Laureto, PP, Lisa, F, Pepe, S (2011) Oxidation of myofibrillar proteins in human heart failure. J Am Coll Cardiol 57: pp. 300-309
    18. Canton, M, Menazza, S, Lisa, F (2014) Oxidative stress in muscular dystrophy: from generic evidence to specific sources and targets. J Muscle Res Cell Motil 35: pp. 23-36
    19. Chen, FC, Ogut, O (2006) Decline of contractility during ischemia鈥搑eperfusion injury: actin glutathionylation and its effect on allosteric interaction with tropomyosin. Am J Physiol Cell Physiol 290: pp. 719-727
    20. Coulis, G, Becila, S, Herrera-Mendez, CH, Sentandreu, MA, Raynaud, F, Richard, I, Benyamin, Y, Ouali, A (2008) Calpain 1 binding capacities of the N1-line region of titin are significantly enhanced by physiological concentrations of calcium. Biochemistry 47: pp. 9174-9183
    21. Dalle-Donne, I, Rossi, R, Giustarini, D, Gagliano, N, Lusini, L, Milzani, A, Simplicio, P, Colombo, R (2001) Actin carbonylation: from a simple marker of protein oxidation to relevant signs of severe functional impairment. Free Radic Biol Med 31: pp. 1075-1083
    22. Dalle-Donne, I, Giustarini, D, Rossi, R, Colombo, R, Milzani, A (2003) Reversible S-glutathionylation of Cys374 regulates actin filament formation by inducing structural changes in the actin molecule. Free Radic Biol Med 34: pp. 23-32
    23. Pascali, F, Hemann, C, Samons, K, Chen, CA, Zweier, JL (2014) Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation. Biochemistry 53: pp. 3679-3688
    24. Lisa, F, Kaludercic, N, Carpi, A, Menab貌, R, Giorgio, M (2009) Mitochondrial pathways for ROS formation and myocardial injury: the relevance of p66(Shc) and monoamine oxidase. Basic Res Cardiol 104: pp. 131-139
    25. Dihman, M, Nakayasu, ES, Madaiah, YH, Reynolds, BK, Wen, JJ, Almeida, IC, Garg, NJ (2008) Enhanced nitrosative stress during Trypanosoma cruzi infection causes nitrotyrosine modification of host proteins: implications in Chagas鈥?disease. Am J Pathol 173: pp. 728-740
    26. Dihman, M, Zago, MP, Nunez, S, Amoroso, A, Rementeria, H, Dousset, P, Nunez Burgos, F, Garg, NJ (2012) Cardiac-oxidized antigens are targets of immune recognition by antibodies and potential molecular determinants in Chagas disease pathogenesis. PLoS One 7: pp. e28449
    27. Disatnik, MH, Dhawan, J, Yu, Y, Beal, MF, Whirl, MM, Franco, AA, Rando, TA (1998) Evidence of oxidative stress in mdx mouse muscle: studies of the pre-necrotic state. J Neurol Sci 161: pp. 77-84
    28. Doroszko, A, Polewicz, D, Cadete, VJ, Sawicka, J, Jones, M, Szczesna-Cordary, D, Cheung, PY, Sawicki, G (2010) Neonatal asphyxia induces the nitration of cardiac myosin light chain 2 that is associated with cardiac systolic dysfunction. Shock 34: pp. 592-600
    29. Eaton, P, Byers, HL, Leeds, N, Ward, MA, Shattock, MJ (2002) Detection, quantitation, purification, and identification of cardiac proteins S-thiolated during ischemia and reperfusion. J Biol Chem 277: pp. 9806-9811
    30. El-Shafey, AF, Armstrong, AE, Terrill, JR, Grounds, MD, Arthur, PG (2011) Screening for increased protein thiol oxidation in oxidatively stressed muscle tissue. Free Radic Res 45: pp. 991-999
    31. Fukuda, N, Granzier, HL (2005) Titin/connectin-based modulation of the Frank-Starling mechanism of the heart. J Muscle Res Cell Motil 26: pp. 319-323
    32. Gao, WD, Murray, CI, Tian, Y (2012) Nitroxyl-mediated disulfide bond formation between cardiac myofilament cysteines enhances contractile function. Circ Res 111: pp. 1002-1011
    33. Gladden, JD, Linke, WA, Redfield, MM (2014) Heart failure with preserved ejection fraction. Pfl眉g Arch 466: pp. 1037-1053
    34. Gr眉tzner, A, Garcia-Manyes, S, K枚tter, S, Badilla, CL, Fernandez, JL, Linke, WA (2009) Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2B-unique sequence. Biophys J 97: pp. 825-834
    35. Hamdani, N, Bishu, KG, Frieling-Salewsky, M, Redfield, MM, Linke, WA (2013) Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction. Cardiovasc Res 97: pp. 464-471
    36. Hamdani, N, Franssen, C, Louren莽o, A (2013) Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ Heart Fail 6: pp. 1239-1249
    37. Hamdani, N, Krysiak, J, Kreusser, MM, Neef, S, Remedios, CG, Maier, LS, Kr眉ger, M, Backs, J, Linke, WA (2013) Crucial role for Ca2+/calmodulin-dependent protein kinase-II in regulating diastolic stress of normal and failing hearts via titin phosphorylation. Circ Res 112: pp. 664-674
    38. Hathout Y, Marathi RL, Rayavarapu S et al (2014) Discovery of serum protein biomarkers in the mdx mouse model and cross-species comparison to Duchenne muscular dystrophy patients. Hum Mol Genet. doi:10.1093/hmg/ddu366 [15 July 2014; Epub ahead of print]
    39. Haycock, JW, MacNeil, S, Jones, P, Harris, JB, Mamtle, D (1996) Oxidative damage to muscle protein in Duchenne muscular dystrophy. NeuroReport 8: pp. 357-361
    40. Haywood, GA, Tsao, PS, Leyen, HE (1996) Expression of inducible nitric oxide synthase in human heart failure. Circulation 93: pp. 1087-1094
    41. Hein, S, Scholz, D, Fujitani, N, Rennollet, H, Brand, T, Friedl, A, Schaper, J (1994) Altered expression of titin and contractile proteins in failing human myocardium. J Mol Cell Cardiol 26: pp. 1291-1306
    42. Hertelendi, Z, T贸th, A, Borb茅ly, A, Galajda, Z, Velden, J, Stienen, GJ, Edes, I, Papp, Z (2008) Oxidation of myofilament protein sulfhydryl groups reduces the contractile force and its Ca2+ sensitivity in human cardiomyocytes. Antioxid Redox Signal 10: pp. 1175-1184
    43. Heusch, P, Canton, M, Aker, S (2010) The contribution of reactive oxygen species and p38 mitogen-activated protein kinase to myofilament oxidation and progression of heart failure in rabbits. Br J Pharmacol 160: pp. 1408-1416
    44. Heymes, C, Bendall, JK, Ratajczak, P, Cave, AC, Samuel, JL, Hasenfuss, G, Shah, AM (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41: pp. 2164-2171
    45. Hidalgo, CG, Hudson, B, Bogomolovas, J, Zhu, Y, Anderson, B, Greaser, M, Labeit, S, Granzier, H (2009) PKC phosphorylation of titin鈥檚 PEVK element: a novel and conserved pathway for modulating myocardial stiffness. Circ Res 105: pp. 631-638
    46. Hong, SJ, Gokulrangan, G, Sch枚neich, C (2007) Proteomic analysis of age dependent nitration of rat cardiac proteins by solution isoelectric focusing coupled to nanoHPLC tandem mass spectrometry. Exp Gerontol 42: pp. 639-651
    47. Horowits, R, Kempner, ES, Bisher, ME, Podolsky, RJ (1986) A physiological role for titin and nebulin in skeletal muscle. Nature 323: pp. 160-164
    48. Inserte, J, Hernando, V, Garcia-Dorado, D (2012) Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovasc Res 96: pp. 23-31
    49. Kandasamy, AD, Chow, AK, Ali, MA, Schulz, R (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85: pp. 413-423
    50. Kanski, J, Behring, A, Pelling, J, Sch枚neich, C (2005) Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging. Am J Physiol Heart Circ Physiol 288: pp. 371-381
    51. Kanski, J, Hong, SJ, Sch枚neich, C (2005) Proteomic analysis of protein nitration in aging skeletal muscle and identification of nitrotyrosine-containing sequences in vivo by nanoelectrospray ionization tandem mass spectrometry. J Biol Chem 280: pp. 24261-24266
    52. Kim, JH, Kwak, HB, Thompson, LV, Lawler, JM (2013) Contribution of oxidative stress to pathology in diaphragm and limb muscles with Duchenne muscular dystrophy. J Muscle Res Cell Motil 34: pp. 1-13
    53. K枚tter, S, Gout, L, Frieling-Salewsky, M, M眉ller, AE, Helling, S, Marcus, K, Remedios, C, Linke, WA, Kr眉ger, M (2013) Differential changes in titin domain phosphorylation increase myofilament stiffness in failing human hearts. Cardiovasc Res 99: pp. 648-656
    54. K枚tter, S, Unger, A, Hamdani, N, Lang, P, Vorgerd, M, Nagel-Steger, L, Linke, WA (2014) Human myocytes are protected from titin aggregation-induced stiffening by small heat shock proteins. J Cell Biol 204: pp. 187-202
    55. Kr眉ger, M, Linke, WA (2006) Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. J Muscle Res Cell Motil 27: pp. 435-444
    56. Kr眉ger, M, Linke, WA (2011) The giant protein titin: a regulatory node that integrates myocyte signaling pathways. J Biol Chem 286: pp. 9905-9912
    57. Kr眉ger, M, K枚tter, S, Gr眉tzner, A, Lang, P, Andresen, C, Redfield, MM, Butt, E, Remedios, CG, Linke, WA (2009) Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res 104: pp. 87-94
    58. Lahmers, S, Wu, Y, Call, DR, Labeit, S, Granzier, H (2004) Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res 94: pp. 505-513
    59. Lamb, GD, Westerblad, H (2011) Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle. J Physiol 589: pp. 2119-2127
    60. Lange, S, Auerbach, D, McLoughlin, P, Perriard, E, Sch盲fer, BW, Perriard, JC, Ehler, E (2002) Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2. J Cell Sci 115: pp. 4925-4936
    61. Larkins, NT, Murphy, RM, Lamb, GD (2012) Influences of temperature, oxidative stress, and phosphorylation on binding of heat shock proteins in skeletal muscle fibers. Am J Physiol Cell Physiol 303: pp. C654-C665
    62. Li, H, Linke, WA, Oberhauser, AF, Carrion-Vazquez, M, Kerkvliet, JG, Lu, H, Marszalek, PE, Fernandez, JM (2002) Reverse engineering of the giant muscle protein titin. Nature 418: pp. 998-1002
    63. Lim, CC, Zuppinger, C, Guo, X, Kuster, GM, Helmes, M, Eppenberger, HM, Suter, TM, Liao, R, Sawyer, DB (2004) Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem 279: pp. 8290-8299
    64. Linke, WA (2000) Stretching molecular springs: elasticity of titin filaments in vertebrate striated muscle. Histol Histopathol 15: pp. 799-811
    65. Linke, WA (2010) Molecular giant vulnerable to oxidative damage: titin joins the club of proteins degraded by matrix metalloproteinase-2. Circulation 122: pp. 2002-2004
    66. Linke, WA, Fernandez, JM (2002) Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium. J Muscle Res Cell Motil 23: pp. 483-497
    67. Linke, WA, Hamdani, N (2014) Gigantic business: titin properties and function through thick and thin. Circ Res 114: pp. 1052-1068
    68. Linke, WA, Rudy, DE, Centner, T, Gautel, M, Witt, C, Labeit, S, Gregorio, CC (1999) I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 146: pp. 631-644
    69. Lovelock, JD, Monasky, MM, Jeong, EM, Lardin, HA, Liu, H, Patel, BG (2012) Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circ Res 110: pp. 841-850
    70. Makarenko, I, Opitz, CA, Leake, MC, Neagoe, C, Kulke, M, Gwathmey, JK, Monte, F, Hajjar, RJ, Linke, WA (2004) Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res 95: pp. 708-716
    71. Mateja, RD, Greaser, ML, Tombe, PP (2013) Impact of titin isoform on length dependent activation and cross-bridge cycling kinetics in rat skeletal muscle. Biochim Biophys Acta 1833: pp. 804-811
    72. Mathewson MA, Chambers HG, Girard PJ, Tenenhaus M, Schwartz AK, Lieber RL (2014) Stiff muscle fibers in calf muscles of patients with cerebral palsy lead to high passive muscle stiffness. J Orthop Res 32:1667鈥?674
    73. Mayans, O, Wuerges, J, Canela, S, Gautel, M, Wilmanns, M (2001) Structural evidence for a possible role of reversible disulphide bridge formation in the elasticity of the muscle protein titin. Structure 9: pp. 331-340
    74. Menazza, S, Blaauw, B, Tiepolo, T, Toniolo, L, Braghetta, P, Spolaore, B, Reggiani, C, Lisa, F, Bonaldo, P, Canton, M (2010) Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy. Hum Mol Genet 19: pp. 4207-4215
    75. Mihm, MJ, Yu, F, Reiser, PJ, Bauer, JA (2003) Effects of peroxynitrite on isolated cardiac trabeculae: selective impact on myofibrillar energetic controllers. Biochemistry 85: pp. 587-596
    76. Miranda, KM (2005) The chemistry of nitroxyl (HNO) and implications in biology. Coord Chem Rev 249: pp. 433-455
    77. Mollica, JP, Dutka, TL, Merry, TL, Lamboley, CR, McConell, GK, McKenna, MJ, Murphy, RM, Lamb, GD (2012) S-glutathionylation of troponin I (fast) increases contractile apparatus Ca2+ sensitivity in fast-twitch muscle fibres of rats and humans. J Physiol 590: pp. 1443-1463
    78. Morano, I, H盲dicke, K, Grom, S, Koch, A, Schwinger, RH, B枚hm, M, Bartel, S, Erdmann, E, Krause, EG (1994) Titin, myosin light chains and C-protein in the developing and failing human heart. J Mol Cell Cardiol 26: pp. 361-368
    79. Murphy, RM, Verburg, E, Lamb, GD (2006) Ca2+ activation of diffusible and bound pools of mu-calpain in rat skeletal muscle. J Physiol 576: pp. 595-612
    80. Mymrikov, EV, Seit-Nebi, AS, Gusev, NB (2011) Large potentials of small heat shock proteins. Physiol Rev 91: pp. 1123-1159
    81. Neagoe, C, Kulke, M, Monte, F, Gwathmey, JK, Tombe, PP, Hajjar, RJ, Linke, WA (2002) Titin isoform switch in ischemic human heart disease. Circulation 106: pp. 1333-1341
    82. Olsson, MC, Kr眉ger, M, Meyer, LH, Ahnlund, L, Gransberg, L, Linke, WA, Larsson, L (2006) Fibre type-specific increase in passive muscle tension in spinal cord-injured subjects with spasticity. J Physiol 577: pp. 339-352
    83. Opitz, CA, Leake, MC, Makarenko, I, Benes, V, Linke, WA (2004) Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ Res 94: pp. 967-975
    84. Passarelli, C, Venere, A, Piroddi, N (2010) Susceptibility of isolated myofibrils to in vitro glutathionylation: potential relevance to muscle functions. Cytoskeleton (Hoboken) 67: pp. 81-89
    85. Patel, BG, Wilder, T, Solaro, RJ (2013) Novel control of cardiac myofilament response to calcium by S-glutathionylation at specific sites of myosin binding protein C. Front Physiol 4: pp. 336
    86. Paulus, WJ, Tsch枚pe, C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62: pp. 263-271
    87. Pizarro, GO, Ogut, O (2009) Impact of actin glutathionylation on the actomyosin-S1 ATPase. Biochemistry 48: pp. 7533-7538
    88. Polewicz, D, Cadete, VJ, Doroszko, A, Hunter, BE, Sawicka, J, Szczesna-Cordary, D, Light, PE, Sawicki, G (2011) Ischemia induced peroxynitrite dependent modifications of cardiomyocyte MLC1 increases its degradation by MMP-2 leading to contractile dysfunction. J Cell Mol Med 15: pp. 1136-1147
    89. Rouillon, J, Zocevic, A, Leger, T, Garcia, C, Camadro, JM, Udd, B, Wong, B, Servais, L, Voit, T, Svinartchouk, F (2014) Proteomics profiling of urine reveals specific titin fragments as biomarkers of Duchenne muscular dystrophy. Neuromuscul Disord 24: pp. 563-573
    90. Sabbah, HN, Tocchetti, CG, Wang, M, Daya, S, Gupta, RC, Tunin, RS, Mazhari, R, Takimoto, E, Paolocci, N, Cowart, D, Colucci, WS, Kass, DA (2013) Nitroxyl (HNO): a novel approach for the acute treatment of heart failure. Circ Heart Fail 6: pp. 1250-1258
    91. Sawicki, G, Leon, H, Sawicka, J, Sariahmetoglu, M, Schulze, CJ, Scott, PG, Szczesna-Cordary, D, Schulz, R (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia鈥搑eperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation 112: pp. 544-552
    92. Sawyer, DB, Siwik, DA, Xiao, L, Pimentel, DR, Singh, K, Colucci, WS (2002) Role of oxidative stress in myocardial hypertrophy and failure. J Mol Cell Cardiol 34: pp. 379-388
    93. Schrammel, A, Behrends, S, Schmidt, K, Koesling, D, Mayer, B (1996) Characterization of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol Pharmacol 50: pp. 1-5
    94. Shah, AM, MacCarthy, PA (2000) Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacol Ther 86: pp. 49-86
    95. Sheikh, F, Raskin, A, Chu, PH (2008) An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. J Clin Investig 118: pp. 3870-3880
    96. Smith, MA, Reid, MB (2006) Redox modulation of contractile function in respiratory and limb skeletal muscle. Respir Physiol Neurobiol 151: pp. 229-241
    97. Steinberg, SF (2013) Oxidative stress and sarcomeric proteins. Circ Res 112: pp. 393-405
    98. St-Pierre, J, Buckingham, JA, Roebuck, SJ, Brand, MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277: pp. 44784-44790
    99. Sung, MM, Schulz, CG, Wang, W, Sawicki, G, Bautista-L贸pez, NL, Schulz, R (2007) Matrix metalloproteinase-2 degrades the cytoskeletal protein alpha-actinin in peroxynitrite mediated myocardial injury. J Mol Cell Cardiol 43: pp. 429-436
    100. Terrill, JR, Radley-Crabb, HG, Iwasaki, T, Lemckert, FA, Arthur, PG, Grounds, MD (2013) Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies. FEBS J 280: pp. 4149-4164
    101. Tiago, T, Sim茫o, S, Aureliano, M, Mart铆n-Romero, FJ, Guti茅rrez-Merino, C (2006) Inhibition of skeletal muscle S1-myosin ATPase by peroxynitrite. Biochemistry 45: pp. 3794-3804
    102. Trombit谩s, K, Freiburg, A, Centner, T, Labeit, S, Granzier, H (1999) Molecular dissection of N2B cardiac titin鈥檚 extensibility. Biophys J 77: pp. 3189-3196
    103. Heerebeek, L, Hamdani, N, Falc茫o-Pires, I (2012) Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation 126: pp. 830-839
    104. Wang, W, Schulze, CJ, Suarez-Pinzon, WL, Dyck, JR, Sawicki, G, Schulz, R (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106: pp. 1543-1549
    105. Ward, DG, Ashton, PR, Trayer, HR, Trayer, IP (2001) Additional PKA phosphorylation sites in human cardiac troponin I. Eur J Biochem 268: pp. 179-185
    106. Warren, CM, Krzesinski, PR, Campbell, KS, Moss, RL, Greaser, ML (2004) Titin isoform changes in rat myocardium during development. Mech Dev 121: pp. 1301-1312
    107. Wright, VP, Reiser, PJ, Clanton, TL (2009) Redox modulation of global phosphatase activity and protein phosphorylation in intact skeletal muscle. J Physiol 587: pp. 5767-5781
    108. Xia, Y, Tsai, AL, Berka, V, Zweier, JL (1998) Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem 273: pp. 25804-25808
    109. Yamasaki, R, Wu, Y, McNabb, M, Greaser, M, Labeit, S, Granzier, H (2002) Protein kinase A phosphorylates titin鈥檚 cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ Res 90: pp. 1181-1188
    110. Zhang, YH, Jin, CZ, Jang, JH, Wang, Y (2014) Molecular mechanisms of neuronal nitric oxide synthase in cardiac function and pathophysiology. J Physiol 592: pp. 3189-3200
  • 刊物主题:Cell Biology; Proteomics; Animal Anatomy / Morphology / Histology; Biomedicine general;
  • 出版者:Springer Netherlands
  • ISSN:1573-2657
文摘
The contractile function of striated muscle cells is altered by oxidative/nitrosative stress, which can be observed under physiological conditions but also in diseases like heart failure or muscular dystrophy. Oxidative stress causes oxidative modifications of myofilament proteins and can impair myocyte contractility. Recent evidence also suggests an important effect of oxidative stress on muscle elasticity and passive stiffness via modifications of the giant protein titin. In this review we provide a short overview of known oxidative modifications in thin and thick filament proteins and then discuss in more detail those oxidative stress-related modifications altering titin stiffness directly or indirectly. Direct modifications of titin include reversible disulfide bonding within the cardiac-specific N2-Bus domain, which increases titin stiffness, and reversible S-glutathionylation of cryptic cysteines in immunoglobulin-like domains, which only takes place after the domains have unfolded and which reduces titin stiffness in cardiac and skeletal muscle. Indirect effects of oxidative stress on titin can occur via reversible modifications of protein kinase signalling pathways (especially the NO-cGMP-PKG axis), which alter the phosphorylation level of certain disordered titin domains and thereby modulate titin stiffness. Oxidative stress also activates proteases such as matrix-metalloproteinase-2 and (indirectly via increasing the intracellular calcium level) calpain-1, both of which cleave titin to irreversibly reduce titin-based stiffness. Although some of these mechanisms require confirmation in the in vivo setting, there is evidence that oxidative stress-related modifications of titin are relevant in the context of biomarker design and represent potential targets for therapeutic intervention in some forms of muscle and heart disease.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700